
Institut Supérieur de l’Aéronautique et de l’Espace

ARINC653 annex

>  AS5506/2 (January 2011)
»  Data Modeling Annex provides guidance on a standard way of associating data

models expressed in other data modeling notations (C or ASN.1) with architecture
models expressed in AADL,

»  Behavior Annex enables modeling of component and component interaction
behavior in a state-machine based annex sublanguage,

»  ARINC653 Annex provides guidance on a standard way of representing ARINC653
standard compliant partitioned embedded system architectures in AADL models.

>  AS5506/1A (October 2015 ?)
»  Code generation Annex defines language-specific rules for source text to be

compliant with an architecture specification written in AADL;
»  Error Model Annex defines features to enable the specification of redundancy

management and risk mitigation methods in an architecture, and enable qualitative
and quantitative assessments of system properties such as safety, reliability,
integrity, availability, and maintainability.

About AADL annexes

AADL Tutorial -- MODELS'15 2

>  ARINC653 aims at supporting the Integrating Modular Avionics
conceptual framework, evolution of federated architecture
» Multiple functions are allocated on the same processor with

space and time isolation
>  ARINC653 defines a set of software API for Safety-Critical

avionics Real-time Operating Systems

About the ARINC653 standard

 page 3

Cockpit
Displays

Air Data
Computer

Flight Mgt
System

ARINC 429 bus

Air Data
Computer

Cockpit
Displays

Flight Mgt
System

ARINC653-compliant kernel, with
time and space partitioning

>  APEX, the Application EXecutive API services:
» Process, time, partition, sampling and queuing ports,
» Buffer, blackboard, semaphore, event error management
» Health management
» With a C and Ada API

>  The APEX is meant for modularity, portability
» A few system calls, 53
» Configuration through external XML files to reduce code/

configuration coupling, delegation of responsibilities

ARINC653 APEX

 page 4

>  AADLv2 added concepts to support IMA systems
>  Most important being the notion of “virtual processor”
» A dedicated scheduling and memory space inside a processor

>  Yet, many issues were still open
» How to model blackboards, semaphores?
» How to represent fault protection mechanism
» How to take into account variability in APEX implementations?

>  Goal of the ARINC653 Annex document
» Define modeling patterns for IMA systems
» Define additional property set when needed to clarify concepts

>  Based on ARINC653-2, published in 2006

Rationale for the ARINC653 Annex

 page 5

>  ARINC module = AADLv2 processor
»  AADL processor defines the OS + configuration parameters
»  Additional properties for major frame, slot allocation, etc.

>  ARINC partitions = AAVLv2 virtual processor
»  Link to partitions as virtual processors

Mapping ARINC653 concepts

 page 6

virtual processor implementation acc_partition.impl
end acc_partition.impl;

processor powerpc end powerpc;

processor implementation powerpc.impl
subcomponents
 -- ARINC653 partitions are subcomponents of the PowerPC component
 part1: virtual processor partitions::acc_partition.impl
 { ARINC653::Partition_Identifier => 1;
 ARINC653::Partition_Name => "acc"; };
properties
 ARINC653::Module_Major_Frame => 150 ms;
 ARINC653::Module_Schedule =>
 ([Partition => reference (part1); Duration => 1 ms;
 Periodic_Processing_Start => true;]);

Other mappings is semantic adaptation of concepts
» ARINC 653 process = AADLv2 thread

•  Rationale: ARINC653 process are OS thread
» ARINC653 queuing ports = AADLv2 event (data) ports
» ARINC653 sampling ports = AADLv2 data ports

•  Semantics are similar, with equivalent configuration parameters for
queue size, refresh period, etc.

» ARINC653 buffers = AADLv2 event data ports
» ARINC653 blackboard = AADLv2 data port or data components

•  To model inter-process communication in the same address space

Mapping ARINC653 concepts, cont’d

 page 7

ADIRU, graphical representation

AADL Tutorial -- MODELS'15 8

Partitions and
processes

Module
Address Space

>  ARINC653 Executives require an additional configuration file
>  A (full) AADL model must define all components
»  For analysis or code generation purposes

>  Can derive configuration file from the AADL model
»  Implemented in Ocarina, targets DeOS and VxWork653

>  Part of the model bus philosophy
» One repository that can be mined for various purposes

•  Analysis, code generation, management of configuration parameters

AADL and XML configuration data

 page 9

Institut Supérieur de l’Aéronautique et de l’Espace

AADL and code generation

>  AADL has a full execution semantics
» Allow for full analysis:

•  Scheduling, security, error, behavior

>  Issue: what about the implementation ?
» How to go to code?
» While preserving both the semantics and non functional

properties ?
>  Solution: enrich AADL with annexes documents
»  To describe application data
»  To detail how to bind code to AADL models

AADL and code generation

AADL Tutorial -- MODELS'15 11

>  AADL requirements document (SAE ARD 5296)
» Analysis and Generation of systems

>  Generation can encompasses many dimensions
1.  Generation of skeletons from AADL components

•  Like from UML class diagrams
2.  Generation of system archetypes

•  Tasks, types, runtime configuration parameters, etc.
>  In the following, we consider option #2
» Supported by Ocarina, see http://www.openaadl.org

AADL objectives

AADL Tutorial -- MODELS'15 12

>  Allow one to clarify actual representation of data
»  Integer, floats, etc. with Data_Representation

>  Actual size of data
»  16/32/64 bits integers with Source_Data_Size

>  Admissible range, precision
>  Patterns for composite types, unions, etc.

>  Based on a dedicated property set Data_Model

About data modeling annex

AADL Tutorial -- MODELS'15 13

>  Solution: enhance definition of types

AADL: modeling data types

 data C_Unsigned_Long_Int
 -- This data component defines a C unsigned long int type, with a
 -- dual nature The first properties defines its representation in
 -- memory, the two last its mapping in C.
 properties
 Data_Model::Data_Representation => integer;
 Data_Model::Number_Representation => unsigned;
 Data_Size => 4 bytes;
 Source_Language => (C);
 Type_Source_Name => "unsigned long int";
 end C_Unsigned_Long_Int;

 data accData extends C_Unsigned_Long_Int
 end accData;

 subprogram acc1_dataOutput_spg
 features
 acc1DataOut: out parameter SHM_DataType::accData;
 event_in: in parameter SHM_DataType::actionData;
 end acc1_dataOutput_spg;

AADL Tutorial -- MODELS'15 14

>  Issue: how to bind user code ?
» Solution: use default AADLv2 properties

AADL and subprograms

subprogram acc1_dataOutput_spg
features
 acc1DataOut: out parameter SHM_DataType::accData;
 event_in: in parameter SHM_DataType::actionData;
properties
 Source_Language => (C);
 Source_Name =>"acc1dataoutput";
 Source_Text => ("../../../acc_code.o");
end acc1_dataOutput_spg;

AADL Tutorial -- MODELS'15 15

>  Issue: how to map source code ?
» Solution: follow guidelines from the code generation annex
» Mapping rules from AADL and the target language

•  Similar to OMG IDL mappings for CORBA

AADL and programming languages

 procedure acc1_dataOutput_spg (-- Ada
 (acc1DataOut: out SHM_DataType.accData;
 event_in: in SHM_DataType::actionData);

subprogram acc1_dataOutput_spg
features
 acc1DataOut: out parameter SHM_DataType::accData;
 event_in: in parameter SHM_DataType::actionData;
end acc1_dataOutput_spg;

 void acc1_dataOutput_spg (/* C */
 (acc1DataOut *SHM_DataType_accData,
 event_in: SHM_DataType_actionData);

AADL Tutorial -- MODELS'15 16

>  Connecting subprograms to threads
» Connect ports to parameters
» Use call sequence attached to thread

Attaching code to components

thread acc1_dataOutput
features
 acc1out: out data port SHM_DataType::accData;
 acc1_command_in: in event data port SHM_DataType::actionData;
properties
 Dispatch_Protocol => Periodic;
 -- …
end acc1_dataOutput;

thread implementation acc1_dataOutput.impl
calls
 sub1: { spg: subprogram subprograms::acc1_dataOutput_spg;};
connections
 C1: parameter spg.acc1DataOut->acc1out;
 C2: parameter acc1_command_in->spg.event_in;
end acc1_dataOutput.impl;

AADL Tutorial -- MODELS'15 17

>  Issue: How much code should we write ? Tasks ? Queues ?
>  Answer: the architecture says all
» One can define a full framework and use it

•  Limited value

» Generate as much things as possible
•  Reduce as much as possible error-prone and tedious tasks

>  Ocarina: massive code generation
»  Take advantage of global knowledge to optimize code, and

generate only what is required
» Support for regular RTOS (POSIX, Xenomai, FreeRTOS) and

ARINC653 APEX (DDC-I DeOS and WRS VxWorks653)

AADL and code generation

AADL Tutorial -- MODELS'15 18

Building process for HI-DRE systems using Ocarina

AADL Tutorial -- MODELS'15 19

>  Is it worth a try ? Of course yes !
>  One pivot notation based on a unique notation
» A-priori validation, using Cheddar, TINA ..
» Optimized code generation

•  Measures show a difference of 6% in size

>  Part of the promise of MBSE
» One binary, no source code written for the most difficult part: the

architecture, buffer, concurrency
» Could be combined with other code generators like SCADE or

Simulink to achieve zero-coding paradigm

Benefits of code generation ?

AADL Tutorial -- MODELS'15 20

Institut Supérieur de l’Aéronautique et de l’Espace

AADL & other MDE
frameworks

Integration with Simulink, SCADE et al.

>  AADL helps modeling architectures
» Capture key aspects of design: hardware/software
» Expression of some non functional properties: priority, resource

consumption, latency, jitter, …
» Enables: scheduling analysis, resource dimensioning, mapping

to formal methods, fault analysis, …
>  Functional notations (Simulink, SCADE, ..) describes precisely

system behavior
» Provides a high-level behavioral/computational view
» mapped onto hardware/software elements

>  Natural complement to ADLs

AADL and other modeling notations

AADL Tutorial -- MODELS'15 22

>  Code generation from models is now a reality
»  Proposed by many tools

>  Functional models
»  kcg: SCADE’s certified code generation
»  Simulink Coder

>  Architectural models
»  Ocarina: AADL code generator for HIsystems

>  Foundations for a “zero coding” approach
»  Model, then integrate code generated from each view

>  Issue: which integration process ?
»  Two approaches, driven by user demand

”Zero coding” paradigm

AADL Tutorial -- MODELS'15 23

>  Each functional framework relies on same foundations
»  Synchronous: discrete computation cycles
»  Asynchronous: function calls

>  SCADE/Simulink/Esterel: a 3-step process
»  Fetch in parameters from AADL subprograms
»  Call the reaction function to compute output values
»  Send the output as out parameters of the AADL subprogram

>  Architectural blocks are mapped onto programming language
equivalent constructs
»  Ocarina relies on stringent coding guidelines to meet requirements for High-Integrity

systems, validated though test harness by ESA, Thales, SEI, and their partners

Code generation patterns

AADL Tutorial -- MODELS'15 24

>  Ocarina handles all code integration aspects
» How to map AADL concepts to source code artefacts (POSIX

threads, Ada tasks, mutexes, ...)
» Handle portability concerns to several platforms, from bare to

native
>  + some knowledge on how a SCADE or Simulink models is

mapped onto C code
» So that integration is done by the code generator
» No manual intervention required

>  Supports “zero coding” approach

From AADL + X tocode

AADL Tutorial -- MODELS'15 25

>  Functions may be defined first, then refined to be
bound to an existing architecture”

Application-driven process

AADL Tutorial -- MODELS'15 26

SCADE/Simulink	

AADL	

>  Reverse option: architecture is defined first, then a skeleton of
the functional model is deduced, then implemented

Architecture-driven process

subprogram spg_scade
features
input: in parameter integer {Source_Name => "add_input";};
output: out parameter integer {Source_Name => "add_output";};
properties
 source_name => "inc";
 source_language => Scade;
 source_location => "/path/to/scade-code/";
end spg_scade;

AADL Tutorial -- MODELS'15 27

>  In both cases, we rely on standard AADLv2 patterns
» Source_Language <-> SCADE or Simulink
» Source_Name <-> SCADE node or Simulink block
» Source_Location <-> path to kcg orSimulink Coder

generated code

>  Smooth integration of AADL and other functional
modeling
» Providing only required information
» While remaining 100% automatic

How to bind to AADL models ?

AADL Tutorial -- MODELS'15 28

TASTE: DSML as inputs, AADL at its core

AADL Tutorial -- MODELS'15 29

>  Integrate SCADE on ARINC653 systems
» Software behavior captured with SCADE
» Architecture specified with AADL

>  Auto-Generate Architecture and “glue code”
» Generate ARINC653 configuration and partitions code
» Different OS, same behavior

>  No need for manual code
» Smooth and integrated process

SCADE integration example

AADL Tutorial -- MODELS'15 30

http://aadl.info/aadl/demo-arinc653/

>  System are heterogeneous, so are models
» AADL separates architecture from functional models
» Allows reference from the architecture to function blocks

>  Integration of AADL and SCADE or Simulink to perform full
generation of systems proved to be effective

>  Advantages
»  “Zero coding” paradigm to ease integration work
» Quality of code generated for both functions and architecture
» Opens the path towards qualification/certification of complex

embedded systems at model-level

Conclusion

AADL Tutorial -- MODELS'15 31

