
Institut Supérieur de l’Aéronautique et de l’Espace

The Architecture Analysis and
Design Language: an overview

1.  AADL a quick overview
2.  AADL key modeling constructs

1.  AADL components
2.  Properties
3.  Component connection

3.  AADL: tool support

Outline

AADL Tutorial -- MODELS'15 2

>  ADL, Architecture Description Language:
»  Goal : modeling software and hardware architectures to master

complexity … to perform analysis
»  Concepts : components, connections, deployments.
»  Many ADLs : formal/non formal, application domain, …

>  ADL for real-time critical embedded systems: AADL
(Architecture Analysis and Design Language).

Introduction

AADL Tutorial -- MODELS'15 3

>  International standard promoted by SAE, AS-2C committee,
released as AS5506 family of standards

>  Version 1.0 (2004), version 2 (2009), 2.1 (2012)
»  Based on feedback from the aerospace industry

>  Annex document to address specific needs
»  Behavior, data, error modeling, code generation, …

>  AADL objectives are “to model a system”
»  With analysis in mind
»  To ease transition from well-defined requirements to the final system :

code production
>  Require semantics => any AADL entity has a semantics

(natural language or formal methods).

AADL: Architecture Analysis & Design Language

AADL Tutorial -- MODELS'15 4

>  AADL model : hierarchy/tree of components
»  Textual, graphical representations, XMI serialization

>  AADL component models a software or a hardware entity
» May be organized in packages : reusable
» Has a type/interface, one or several implementations
» May have subcomponents
» May extend/refine other components
» May have properties : valued typed attributes (source code

file name, priority, execution time, memory consumption, …)

>  Component interactions :
»  Modeled by component connections
»  AADL features are connection points

AADL components

AADL Tutorial -- MODELS'15 5

>  AADLv2 distinguished type and implementation
»  Component type: high-level specification of a component

•  name, category, features, properties => interface

»  Component implementation: internal structure (subcomponents),
additional or refined properties, connections

>  Component categories: model abstractions
»  Categories have well-defined semantics, refined through properties
»  Denote software (threads, data, ..), hardware (processor, bus, ..)

AADL components

AADL Tutorial -- MODELS'15 6

>  All component type declarations follow the same pattern:

Component type

<category> foo [extends <bar>]!
features!
 -- list of features, interface!
 -- e.g. messages, access to data, etc.!
properties!
 -- list of properties, e.g. priority!
end foo; !

Inherit features and !
properties from parent!

Some properties describing !
non-functional aspect of the!
component!

 -- Model a sequential execution flow!
 subprogram Spg -- Spg represents a C function, !
 features -- in file "foo.c", that takes one !
 in_param : in parameter foo_data; -- parameter as input!
 properties!
 Source_Language => C;!
 Source_Text => ("foo.c");!
 end Spg;!
!
 -- Model a schedulable flow of control!
 thread bar_thread -- bar_thread is a sporadic thread :!
 features -- dispatched whenever it !
 in_data : in event data port foo_data; -- receives an event on its port !
 properties !
 Dispatch_Protocol => Sporadic;!
 end bar_thread;!

AADL Tutorial -- MODELS'15 7

>  Component Implementation complete the interface

Component implementation

<category> implementation foo.i [extends <bar>.i]!
subcomponents!
 -- internal elements!
connections!
 -- from external interface to internal subcomponents!
properties!
 -- list of properties!
end foo.i; !

foo.i implements foo!

 -- Model a schedulable flow of control!
 thread bar_thread -- bar_thread is a sporadic thread :!
 features -- dispatched whenever it !
 in_data : in event data port foo_data; -- receives an event on its port !
 properties !
 Dispatch_Protocol => Sporadic;!
 end bar_thread;!
!
 thread implementation bar_thread.impl -- In this implementation, at each!
 calls -- dispatch we execute the "C" call !
 C : { S : subprogram spg; }; -- sequence. We pass the dispatch !
 connections -- parameter to the call sequence!
 parameter in_data -> S.in_param;!
 end bar_thread.impl;!
!

AADL Tutorial -- MODELS'15 8

>  AADL introduces many other concepts:
»  Related to embedded real-time critical systems :

•  AADL flows: capture high-level data+execution flows
•  AADL modes: model operational modes in the form of an

alternative set of active components/connections/…
»  To ease models design/management:

•  AADL packages (similar to Ada/Java, renames, private/public)
•  AADL abstract component, component extension

>  AADL is a rich language :
»  200+ entities in the meta-model
»  BNF has 185 syntax rules
»  Around 250 legality rules and more than 500 semantics rules
»  400 pages core document + various annex documents

AADL concepts

AADL Tutorial -- MODELS'15 9

1.  AADL a quick overview
2.  AADL key modeling constructs

1.  AADL components
2.  Properties
3.  Component connection

3.  AADL: tool support

Outline

AADL Tutorial -- MODELS'15 10

AADL component categories refer to well-known abstractions:
>  thread : schedulable entity, maps to task/thread of an RTOS
>  data : data placeholder, e.g. C struct, C++ class, Ada record
>  process : address space. It must hold at least one thread
>  subprogram : a sequential execution flow, associated to a source

code (C, Ada) or a model (SCADE, Simulink)
>  thread group : hierarchy of threads

Component categories are attached to graphical elements:

Software components categories

Thread data Threadgroup process subprogram

AADL Tutorial -- MODELS'15 11

Hardware categories model resources available:
>  processor/virtual processor : schedule component (combined CPU

and RTOS scheduler). A processor may contain multiple virtual
processors.

>  memory : model data storage (memory, hard drive)
>  device : component that interacts with the environment. Internals

(e.g. firmware) is not modeled.
>  bus/virtual bus : data exchange mechanism between components

Component categories are attached to graphical elements:

Hardware components categories

Device Memory bus Processor

AADL Tutorial -- MODELS'15 12

>  Component types and implementations
define a library of entities

>  An AADL model is a set of
 component instances

>  System must be instantiated through a
hierarchy of subcomponents, from root
(system) to the leafs (subprograms, ..)
to define the actual system we analyze

>  Captured using the “system” category

The system category
Root System!

Sub System! Process! Processor!

Thread! Data!

Subprogram!

system ADIRU end ADIRU;

system implementation ADIRU.impl
subcomponents
 main_mem : memory ADIRU_memory::main_memory.impl;
 main_cpu : processor ADIRU_processor::powerpc.impl;

AADL Tutorial -- MODELS'15 13

>  Semantics: some restrictions apply on subcomponents
» A hardware cannot contain software, etc.

» Similar restrictions on semantic connections, binding of
elements, etc.

About subcomponents

data	

 data, subprogram	

thread	

 data, subprogram	

thread group	

 data, thread, thread group, subprogram	

process	

 thread, thread group, data	

processor	

 Memory, virtual processor, bus,	

memory	

 Memory, bus	

system	

 All except subprogram, thread et thread group	

AADL Tutorial -- MODELS'15 14

1.  AADL a quick overview
2.  AADL key modeling constructs

1.  AADL components
2.  Properties
3.  Component connection

3.  AADL: tool support

Outline

AADL Tutorial -- MODELS'15 15

>  Property: Typed attribute, associated to components
»  Property = name + type + allowed components
»  Property association = property name + value.
»  Can be propagated to subcomponents: inherit
»  Can override parent’s one, case of extends

>  Property sets: group property definitions.
»  Property sets part of the standard, e.g. Thread_Properties.
»  Or user-defined, e.g. for new analysis such as power analysis

AADL properties

property set Thread_Properties is
 Dispatch_Protocol: Supported_Dispatch_Protocols
 applies to (thread, device, virtual processor);

 Priority: inherit aadlinteger
 applies to (thread, thread group, process, system, device, data);
 end Thread_Properties;

AADL Tutorial -- MODELS'15 16

>  Properties are typed with units to model physical
systems, related to embedded real-time critical systems.

AADL properties

property set AADL_Projects is !
Time_Units: type units (!
 ps, !
 ns => ps * 1000, !
 us => ns * 1000, !
 ms => us * 1000,!
 sec => ms * 1000, !
 min => sec * 60, !
 hr => min * 60);!
-- …!
end AADL_Projects;!

property set Timing_Properties is!
 !
 Time: type aadlinteger !
 0 ps .. Max_Time units Time_Units;!
 !
 Time_Range: type range of Time;!
!
 Compute_Execution_Time: Time_Range!
 applies to thread, device, subprogram, !
 event port, event data port);!
!
end Timing_Properties;!
!

AADL Tutorial -- MODELS'15 17

>  Properties are associated to a component type (1) or
implementation (2), as part of a subcomponent instance
(3), or a contained property association (4).

AADL properties

process implementation bar.others
subcomponents
 foo0 : thread foo.impl;
 foo1 : thread foo.impl;
 foo2 : thread foor.impl
 {Deadline => 200 ms;}; -- (3)
properties -- (4)
 Deadline => 300 ms applies to foo1;
end bar.others;

thread foo
properties -- (1)
 Compute_Execution_Time => 3 .. 4 ms;
 Deadline => 150 ms ;
end foo;

thread implementation foo.impl
properties -- (2)
 Deadline => 160 ms;
 Compute_Execution_Time => 4 .. 10 ms;
end foo.impl;

AADL Tutorial -- MODELS'15 18

1.  AADL a quick overview
2.  AADL key modeling constructs

1.  AADL components
2.  Properties
3.  Component connection

3.  AADL: tool support

Outline

AADL Tutorial -- MODELS'15 19

>  Component connection: model component interactions
» Control flow and/or data flow

•  e.g. exchange of messages, shared data access, remote
subprogram call (RPC), …

>  features : component point part of the interface
»  Each feature has a name, a direction, and a category

>  Features direction for port and parameter:
»  input (in), output (out), both (in out)

>  Features category: specification of the type of interaction
»  event port : event exchange (e.g. alarm, interruption)
»  data port/event data port : synchronous/asynchronous exchange of

data/message
»  subprogram parameter
»  data access : access to a data, possibly shared
»  subprogram access : RPC or rendez-vous

Component connection

AADL Tutorial -- MODELS'15 20

>  Features of subcomponents are connected in the
“connections” subclause of the enclosing component

>  Ex: threads & thread connection on data port

Component connection

process acc_process
features
 acc1_output: out data port SHM_DataType::accData;
 -- …
end acc_process;

process implementation acc_process.impl
subcomponents
 acc1: thread threads::acc1_dataOutput.impl;
 -- …
connections
 C7: port acc1.acc1out -> acc1_output;
 -- ..

AADL Tutorial -- MODELS'15 21

1.  Sampling connection: takes the latest value
»  Problem: data consistency (lost or read twice) !

2.  Immediate: receiver thread is immediately awaken, and will read
data when emitter finishes

3.  Delayed: actual transmission is delayed to the next time frame

Data connection policies

AADL Tutorial -- MODELS'15 22

1.  AADL a quick overview
2.  AADL key modeling constructs

1.  AADL components
2.  Properties
3.  Component connection

3.  AADL: tool support

Outline

AADL Tutorial -- MODELS'15 23

>  Multiple AADL toolchains exist, they can be easily combined via
the textual syntax. Most of them have a FLOSS license

>  OSATE (SEI/CMU, http://aadl.info)
»  Eclipse-based tools. Reference implementation
»  Textual and graphical editors + various plug-ins (latency, security, …)

>  Ocarina (ISAE, http://www.openaadl.org)
»  Command line tool, library to manipulate models in Python
»  AADL parser + code generation + analysis (Petri Net, WCET, …)

>  AADLInspector (Ellidiss, http://www.ellidiss.com)
»  Lightweight tool to inspect AADL models. AADLv1 and v2
»  Industrial version of Cheddar + Simulation Engine

>  Others: RAMSES, PolyChrony, ASSIST, MASIW, MDCF, TASTE, …

>  In the following, we will concentrate on OSATE and Ocarina

AADL toolchains

AADL Tutorial -- MODELS'15 24

