AADL : about scheduling

analysis

Scheduling analysis, what 1s 1t ?

0 Embedded real-time critical systems have
temporal constraints to meet (e.g. deadline).

O Many systems are built with operating systems
ﬁrowdlng multitasking facilities ... Tasks may
ave deadline.

0 But, tasks make temporal constraints
analysis difficult to do :

0 We must take the task scheduling into
account in order to check task temporal
constraints.

0 Scheduling (or schedulability) analysis.

page 2

Summary

1. Issues about real-time scheduling analysis :
AADL to the rescue

2. Basics on scheduling analysis : fixed-priority
scheduling for uniprocessor architectures

3. AADL components/properties to scheduling
analysis

page 3

Real-Time scheduling theory

1. A set of simplified tasks models (to model functions of

the system)

= Example:

R < Deadline R=C+ >, {51[(131

jOnp(i) Pl

3. Asetofschedulin%algorithms : build the full
scheduling/GANTT diagram

TosknamesT1 Periods 5 Capacity= 1; Deadline= 5; Start times 0; Priority= 1; Cp=cpus

2. A set of analytical methods (called feasibility tests)

T T
Taskname=T2 Periog= 10; Capecity= 2 Deadline= 10; Start time= 0; Priority= 1; Cpu=cpua

Toskneme=T3 Periods 30; Cepacity= 12; Desdline= 30; Stert time= 0; Priority= 1; Cpu=cpua

page 4

Real-Time scheduling theory 1s hard to apply

O Real-Time scheduling theory
= Theoretical results defined from 1974 to 1994
feasibility tests exist for uniprocessor architectures
o0 Now supported at a decent level by POSIX 1003
real-time operating systems, ARINCG653, ...

O Industry demanding
= Yet, hard to use

page 5

Real-Time scheduling theory 1s hard to apply

O Requires strong theoretical knowledge/skills
= Numerous theoretical results: how to choose the right one ?
= Numerous assumptions for each result.
= How to abstract/model a system to verify deadlines?
o How to integrate scheduling analysis in the engineering
process ?
= When to apply it ? What about tools ?

It is the role of an ADL to hide those details

page 6

AADL to the rescue ?

o AADL helps modeling a full system, including hardware,
task sets, connections, operating system features, ...

o All of these elements are mandatory to apply real-time
scheduling theory

m Examples: an AADL model can include
Task execution time or task deadline or task release times
Scheduling parameters

o However, in many cases, the models stay too complex
= Multiprocessor architectures, shared buffers or buses, ...

page 7

Summary

1. Issues about real-time scheduling analysis :
AADL to the rescue

2. Basics on scheduling analysis : fixed-priority
scheduling for uniprocessor architectures

3. AADL components/properties to scheduling
analysis

page 8

Real-time scheduling theory : models of task

O Task simplified model: sequence of
statements + data.

0 Usual kind of tasks:
= Independent tasks or dependent tasks.

= Periodic and sporadic tasks (critical
functions) : have several jobs and release
times

= Aperiodic tasks (non critical functions) : only

e o ONE job and one release time

Real-time scheduling theory : models of task

Task i capacity
Si Pi / Di
C me[Em-| -

t0 t% /‘ t3 t4

Task i release times
o Usual parameters of a periodic task i:

m Period: Pi (duration between two release times). A task starts a job
for each release time.

Deadline to meet: Di, timing constraint to meet.
First task release time (first job): Si.
Worst case execution time of each job: Ci (or capacity or WCET).

Priority: allows the scheduler to choose the task to run
page 10

Real-time scheduling theory : models of task

O Assumptions for the next slides (synchronous
periodic task with deadlines on requests):

m All tasks are periodic.
» All tasks are independent.

» Vi : Pi=Di : a task must end its current job before its next
release time.

m Vi: Si=0 => called critical instant (worst case on
processor demand).

page 11

Uniprocessor fixed priority scheduling

O Fixed priority scheduling :
= Scheduling based on fixed priority => priorities do not
change during execution time.
= Priorities are assigned at design time (off-line).
» Efficient and simple feasibility tests.
m Scheduler easy to implement into real-time operating
systems.
O Rate Monotonic priority assignment :

= Optimal assignment in the case of fixed priority
scheduling and uniprocessor.

= Periodic tasks only.
page 12

Uniprocessor fixed priority scheduling

O Two steps:

1. Rate monotonic priority assignment: the
highest priority tasks have the smallest periods.
Priorities are assigned off-line (e.g. at design time,
before execution).

2. Fixed priority scheduling : at any time, run the
ready task which has the highest priority level.

page 13

Uniprocessor fixed priority scheduling

O Rate Monotonic assignment and preemptive

fixed priority scheduling: T2 is presmpted
// \ Deadline
//// \\ of T2
» 4
T2 LTI [TTTT HEEEE EH
Deadline Deadline Deadline
of T1 of T1 of T1
T4 [N | | [S [| |]
0 6 10 16 20 26 27 30

= Assuming VxWorks priority levels (high=0 ; low=255)
= T1:C1=6, P1=10, Prio1=0
= T2:C2=9, P2=30, Prio2=1 page 14

Uniprocessor fixed priority scheduling

O Feasibility/Schedulability tests to predict on
design-time if deadline will be met:

1. Run simulations on hyperperiod = [0,LCM(Pi)]. Sufficient
and necessary condition.

2. Processor utilization factor test:

1
U=Y,Ci/Pi <n.(2n-1) (about 69%)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary condition.

3. Task worst case response time, noted Ri : delay between
task release time and task completion time. Any priority

assignment but preemptive scheduling.
page 15

Uniprocessor fixed priority scheduling

o Compute RI, task i worst case response time:
m Task i response time = task i capacity + delay the task i

has to wait for higher priority task j. Or:

R=C+ Zwaiting timedueto | or R=C + Z {ﬂ—l[@j

iChp(i) iBhp@)] T

= hp(i) is the set of tasks which have a higher priority than
task i.

® [x] returns the smallest integer not smaller than x.

page 16

Uniprocessor fixed priority scheduling

O To compute task response time: compute wi¥ with:

wi = Ci+ ¥ jenpn| Wi /Pj]- Cj

o Start with wi®=Ci.
o Compute wil, wi?, wi3, ... wi¥ upto:

= If wi* >Pi. No task response time can be computed for
task i. Deadlines will be missed !

wi*~1. wik is the task i response time. Deadlines

w If wik =
will be met.

page 17

Uniprocessor fixed priority scheduling

o Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

wl®=C1=3>r1=3
w20 =(C2=2

.3

AR LiCal P
wer = PLI"TT7

22+ cim24 |} 3255m2=5
wer = PLI" T =
w3 =(3=5
0

€2=10

1

P2
w

2 =
w3 C3+ P2

w30 w3
w3l =C3+ e .Cl+
[C2=

C2=

4 4

w3
w3® =C3+ P2 C2=18=>r3=18

i
[rrl e+ [2=
w33=c3+[W lc1+";2]cz
[e[z

[l el

ST L I Lk
s P2

page 18

Uniprocessor fixed priority scheduling

o

Example with the AADL case study:

= “display_panel” thread which displays data. P=100, C=20.
= “receiver” thread which sends data. P=250, C=50.

= “analyser” thread which analyzes data. P=500, C=150.

o Processor utilization factor test:
= U=20/100+150/500+50/250=0.7

1
= Bound=3.(25 — 1)=0.779
= U<Bound => deadlines will be met.

a

Task response time: Rgnaiyser=330, Raispiay panei=20,
Rreceiver =70.

o Run simulations on hyperperiod: [0,LCM(Pi)] = [0,500].

page 19

Uniprocessor fixed priority scheduling

Response times = 20

,//\\.

diSplaypanellHHi\II\IIH\ \II\HI\I\IHII\HIIHHII\II
- | 1 1] | |
0 100 200 220 300 400 500

; | | |
receiver I [DN [[[[T [[TT [TTTT \il BN [[[[[T [TTTTTTTITTTTI I
0 70\ 250 3;0\ Response time = 50 2

Response time = 70 P

TR |

analyzer |77 111 (ol [[oimimimmmm | [TTTT T W TTTTTTTITTITTTITI
0 Response time = 330 =l 500

page 20

Fixed priority and shared resources

O Previous tasks were independent ... does not
really exist in true life.

O Task dependencies :

m Shared resources.

E.g. with AADL: threads may wait for AADL protected data
component access.

m Precedencies between tasks.

E.g with AADL: threads exchange data by data port
connections.

page 21

Fixed priority and shared resources

o Shared resources are modeled by semaphores for scheduling analysis.
o We use specific semaphores implementing inheritance protocols:
m To take care of priority inversion.

= To compute worst case task waiting time for the access to a shared
resource. Blocking time Bi.

o Inheritance protocols:

= PIP (Priority inheritance protocol), can not be used with more than
one shared resource due to deadlock.

m PCP (Priority Ceiling Protocol) , implemented in most of real-time
operating systems (e.g. VxWorks).

= Several implementations of PCP exists: OPCP, ICPP, ...

page 22

Fixed priority and shared resources

o What is Priority inversion: a low priority task blocks a
high priority task

Task is preempted

lock(mutex) ’ A unlock(mutex)

T1 (low) |:':y (= | -
0 1
* lock(mutex) unlock(mutex)
T3 (high) |
Task is blocked
T2 (medium) L —

Task release times

O B; = worst case on the shared resource waiting time.
page 23

Fixed priority and shared resources

Priority of T1= ceiling priority of « mutex » = high
;

e Priority of T1= initial priority of T1 = low
10ck(muf:ﬁ" unlock(m ute)s) i
T1 (low) '7[7|‘ -
Q 2
‘ lock(mutex) unlock(mutex)
Ta(high) % [| -
4
T2 (medium) | I |-

o ICPP (Immediate Ceiling Priority Protocol):

m Ceiling priority of a resource = maximum fixed priority of the tasks
which use it.

= Dynamic task priority = maximum of its own fixed priority and the
ceiling priorities of any resources it has locked.

= B;=longest critical section ; prevent deadlocks
page 24

Fixed priority and shared resources

O How to take into account the waiting time Bi:

m Processor utilization factor test :
i—-1 Ck + Ci+Bi <

1
k=1pp T = L(21-1)

Vil <i<n:)

= Worst case response time :

R=B+C+ Z 3 [T,

jOnp(@)| " j

page 25

To conclude on scheduling analysis

= Many feasibility tests: depending on task, processor, scheduler,
shared resource, dependencies, multiprocessor, hierarchical,
distributed, ... ~
R=w+J
R+J,
R=g+C+ Y R, R W.:C.+Z{7WEC.
m(-)“w R :Ci + z ’7‘| [:(DJ. iwwo| B
jap(i)| T
R=G+ Y [ﬂm’ + max(C, 0k Ohp(i))
ithp(i) |
= Many assumptions : require preemptive, fixed priority scheduling,
synchronous periodic, independent tasks, deadlines on requests ...

Many feasibility tests Many assumptions ...
How to choose them?

page 26

Summary

1. Issues about real-time scheduling analysis :
AADL to the rescue

2. Basics on scheduling analysis : fixed-priority
scheduling for uniprocessor architectures

3. AADL components/properties to scheduling
analysis

page 27

AADL to the rescue ?

O Issues:
= Ensure all required model elements are given for the analysis

= Ensure model elements are compliant with analysis
requirements/assumptions

O AADL helps for the first issue:

= AADL as a pivot language between tools. International
standard.

= Close to the real-time scheduling theory: real-time scheduling
analysis concepts can be found. Ex:
Component categories: thread, data, processor
Property: Deadline, Fixed Priority, ICPP,
Ceiling Priority, ...
page 28

Property sets for scheduling analysis

O Properties related to processor component:

Preemptive_Scheduler . aadl bool ean applies to (processor);

Scheduling_Protocol
inherit |ist of Supported_Scheduling_Protocols
applies to (virtual processor, processor);
-- RATE_MONOTONIC_PROTOCOL,
-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ..

page 29

Property sets for scheduling analysis

O Properties related to the threads/data
components:

Compute_Execution_Time : Time_Range
applies to (thread, subprogram, ...);

Deadline : inherit Time => Period applies to (thread, ...);

Period : inherit Time applies to (thread, ...);

Dispatch_Protocol : Supported_Dispatch_Protocols

applies to (thread);
-- Periodic, Sporadic, Timed, Hybrid, Aperiodic , Backgro
Priority : inherit aadlinteger applies to (thread, ..., data

Concurrency_Control_Protocol
page 30 Supported_Concurrency_Control_Protocols applies to (dat
-- None, PCP, ICPP, ...

Property sets for scheduling analysis

o Example:

thread implementation receiver.impl
properties
Dispatch_Protocol => Periodic;
Compute_Execution_Time => 31 ms.. 50 ms;
Deadline => 250 ms;
Period => 250 ms;
end receiver.impl;

data implementation target_position.impl
properties
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL,;
end target_position.impl;

page 31

process implementation processing.others
subcomponents
receiver : thread receiver.impl;
analyzer : thread analyzer.impl;
target : data target_position.impl;

processor implementation leon2
properties

Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL;

Preemptive_Scheduler => true;
end leon2;

system implementation radar.simple
subcomponents
main : process processing.others;
cpu : processor leon2;

Cheddar : a framework to access
schedulability of AADL models

O Cheddar tool =
real-time scheduling theory)

analysis framework (queueing system theory &

+ internal ADL (architecture description language)
+ various standard ADL parsers (AADL, MARTE UML)

+ simple model editor
+ ...

o Two versions :

= Open source (Cheddar) : educational and research.
= Commercial product (AADLInspector) : Ellidiss Tech product.

o Supports : Ellidiss Tech., Conseil régional de Bretagne, BMO,
EGIDE/Campus France, Thales Communication, BPI France

page 32

Cheddar : a framework to access
schedulability of AADL models

Demos:
Scheduling analysis of the radar example with Cheddar

.. And with AADLInspector also

F Cheddar : a free real time scheduling simulator - O] x

s Edt Viow Toon Rap

= Sehesuinban, et Tob | Comutmcy | Ligeety s | My

potnectse| .- - Task rosponse time computed from simulation §
ol ! 71 > 6/worst 6/best 6.00000/average
i = dn S e T2 => S6/worst 35/best 46.81661/average
| st T3 <> 10/worsl 4/best 6,00000/average
I || i 4 -5 1/worst 1/best 1.00000/. e
- W0 deadline missed in the computed scheduling : the task set &
seems to be schedulable.

