
AADL : about code generation

AADL objectives

� AADL requirements document (SAE ARD 5296)
� Analysis and Generation of systems

� Generation can encompasses many dimensions
1. Generation of skeletons from AADL components

� Like from UML class diagrams

2. Generation of system archetypes
� Tasks, types, runtime configuration parameters, etc.

� In the following, we consider option #2
� Supported by Ocarina, see http://www.openaadl.org

2

AADL and code generation

� AADL has a full execution semantics
� Allow for full analysis:

� Scheduling, security, error, behavior

� Issue: what about the implementation ?
� How to go to code?
� While preserving both the semantics and non

functional properties ?

� Solution: enrich AADL with annexes documents
� To describe application data
� To detail how to bind code to AADL models

3

About AS5506/2 (Jan. 2011)

� This document consists of three annexes to the
SAE AADL standard that
� The Data Modeling Annex provides guidance on a

standard way of associating data models expressed
in other data modeling notations such as UML or
ASN.1 with architecture models expressed in AADL,

� The Behavior Annex enables modeling of
component and component interaction behavior in a
state-machine based annex sublanguage, and

� The ARINC653 Annex provides guidance on a
standard way of representing ARINC653 standard
compliant partitioned embedded system architectures
in AADL models.

4

About data modeling annex

� Allow one to clarify actual representation of data
� Integer, floats, etc. with Data_Representation

� Actual size of data
� 16/32/64 bits integers with Source_Data_Size

� Admissible range, precision
� Patterns for composite types, unions, etc.

� Based on a dedicated property set Data_Model

5

AADL: modeling data types

� Solution : enhance definition of types
� One step closer to source code
� Note: irrelevant for scheduling analysis

subprogram Receiver_Spg
features

receiver_out : out parameter Target_Distance;
receiver_in : in parameter Target_Distance;

end Receiver_Spg;

data Target_Distance
properties

Data_Model::Data_Representation => integer;
end Target_Distance;

6

AADL and subprograms

� Issue: how to bind user code ?
� Solution: use default AADLv2 properties

subprogram Receiver_Spg
features

receiver_out : out parameter Target_Distance;
receiver_in : in parameter Target_Distance;

properties
Source_Language => (Ada95); -- defined in AADL_Project
Source_Name => "radar.receiver";

end Receiver_Spg;

7

AADL and programming languages

� Issue: how to map source code ?
� Solution: guidelines provided in the

programming language annex document
� Mapping rules from AADL and the target language

� Similarly OMG IDL mappings for CORBA

procedure Receiver -- Ada
(Receiver_Out : out Target_Distance;

Receiver_In : Target_Distance);

subprogram Receiver_Spg
features

receiver_out : out parameter Target_Distance;
receiver_in : in parameter Target_Distance;

end Receiver_Spg;

void receiver /* C99 */
(target_distance *receiver_out,

target_distance receiver_in); 8

About AADL_Project

� AADL_Project is a property set, project specific
� Enumerators for particular configuration
� Defined w.r.t. model processing tools

9

Supported_Scheduling_Protocols: type enumeration
(SporadicServer, RMS, FixedTimeline, EDF, …

Supported_Concurrency_Control_Protocols: type enumeration
(None_Specified, Priority_Inheritance, Priority_Ceiling, ..

Supported_Source_Languages: type enumeration
(Ada95,C, Scade, Simulink, …

Attaching code to components

� Connecting subprograms to threads

� Early specifications, for referring to a symbol

thread receiver
features
receiver_out : out data port radar_types::Target_Distance;
receiver_in : in data port radar_types::Target_Distance;

end receiver;

thread implementation receiver.impl
properties
Dispatch_Protocol => Periodic;
Compute_Entrypoint_Source_Text => « radar.transmitter » ;
-- Attaching subprogram to thread, executed at each dispatch

end receiver.impl;

10

Attaching code to components

� Connecting subprograms to threads
thread receiver
features
receiver_in : in event data port radar_types::Target_Distance
{ Compute_Entrypoint_Source_Text => « radar.transmitter » ;
-- Attaching subprogram to port, executed at each dispatch

};
end receiver;

thread receiver2
features
receiver_in : in data port radar_types::Target_Distance
{ Compute_Entrypoint => classifier (transmitter_spg);
-- Attaching subprogram to port, more precise

};
end receiver2;

11

Attaching code to components

� Related properties
� Activate_Entrypoint: upon thread activation
� Compute_Entrypoint: dispatch
� Finalize_Entrypoint: finalization
� Initialize_Entrypoint: initialization of component
� Recover_Entrypoint: in case of error

� Exist for both textual symbols (<x>_Source_Text
property) or subprograms classifiers

� Applied to thread, device, subprogram, event port, event
data port entities

12

AADL and code generation

� Issue: How much code should we write ? Tasks
? Queues ?

� Answer: the architecture says all
� One can define a full framework and use it

� Limited value

� Generate as much things as possible
� Reduce as much as possible error-prone and tedious tasks

� Ocarina: massive code generation
� Take advantage of global knowledge to optimize

code, and generate only what is required
13

Building process for HI-DRE systems using

Ocarina

14

Benefits of code generation ?

� Is it worth a try ?
� Of course yes !
� One pivot notation based on a unique notation

� A-priori validation, using Cheddar, BIP, TINA ..
� Optimized code generation

� Measures show a difference of 6% in size

� Part of the promise of MBSE
� One binary, no source code written for the most

difficult part: the architecture, buffer, concurrency
� Could be combined with other code generators like

SCADE or Simulink to achieve zero-coding paradigm
15

Radar demo: code generation

walkthrough

16

The Radar case study v1

� Model done with OSATE2
� IMV for graphical view

� Text-based to have full
control on properties

� Ocarina for code
generation

17

Deployment on native target

� AADL Processor: execution platform

� + simulation code for devices

page 18

processor cpu_leon2
properties

Scheduling_Protocol => (RMS);
-- Configuration of scheduler
Deployment::Execution_Platform => Native;
-- Target platform

end cpu_leon2;

Generating Cheddar + code

� Result from Cheddar � Traces from
execution

page 19

2) Feasibility test based on
worst case task response time :

- Bound on task response time :
main_analyse => 130
main_display => 70
main_receive => 40
main_control_angle => 20
main_transmit => 10

- All task deadlines will be met :
the task set is schedulable.

macbookair-hugues% ./radar_v1/main/main
[0] Transmitter
[0] Controller, motor is at angular position 1
[1] Analyser : target is at distance: 0 at angular position 0
[1] Display_Panel: target is at (0, 0)
[1] Receiver, target is at distance 1
[500] Transmitter
[1001] Transmitter
[1500] Transmitter
[1500] Receiver, target is at distance 2
[1500] Controller, motor is at angular position 2
[2000] Display_Panel: target is at (0, 0)
[2001] Transmitter
[2500] Transmitter
[3000] Transmitter
[3000] Receiver, target is at distance 3
[3000] Controller, motor is at angular position 3
[3500] Transmitter
[4000] Transmitter
[4000] Display_Panel: target is at (0, 0)

Assessment

� It works ;)
� Execution traces meet scheduling simulation
� And expected behavior

� Initial models use event ports
� For each thread: one mutex + PCP is used

page 20

The Radar case study v2

� Change port communication with shared
variable

21

Generating Cheddar + code

� Result from Cheddar � Traces from
execution

page 22

2) Feasibility test based on
worst case task response time :

- Bound on task response time :
main_analyse => 130
main_display => 70
main_receive => 40
main_control_angle => 20
main_transmit => 10

- All task deadlines will be met :
the task set is schedulable.

macbookair-hugues% ./radar_v2/main/main
[0] Transmitter
[0] Controller, motor is at angular position 1
[1] Analyser : target is at distance: 0 at angular position 0
[1] Display_Panel: target is at (0, 0)
[1] Receiver, target is at distance 1
[500] Transmitter
[1001] Transmitter
[1500] Transmitter
[1500] Receiver, target is at distance 2
[1500] Controller, motor is at angular position 2
[2000] Display_Panel: target is at (0, 0)
[2001] Transmitter
[2500] Transmitter
[3000] Transmitter
[3000] Receiver, target is at distance 3
[3000] Controller, motor is at angular position 3
[3500] Transmitter
[4000] Transmitter
[4000] Display_Panel: target is at (0, 0)

Assessment

� It still works ;)
� We can exploit models a little more

� Cheddar indicates that

� We can change protocol to none safely
page 23

data PO_Target_Distance
features

-- …
properties

Concurrency_Control_Protocol => Priority_Ceiling;
-- Priority is not set, will use default value
-- of maximum priority

end PO_Target_Distance;

Scheduling simulation, processor cpu :
- Number of preemptions : 0
- Number of context switches : 4

AADL & Analysis: scheduling

analysis strikes back

What about WCET?

� Issue: Cheddar can evaluate schedulability of
an AADL model, extracting all relevant
information
� What about figures for WCET ?
� Usually relies on user-provided inputs, possibly wrong
� Yet, we have code generated provided by AADL-to-

code + user-code

� Solution: integrate a WCET tool in the toolchain
� In Ocarina, use of Bound-T (Tidorum LtD)
� Others exist: AbsInt, Rapita, …

25

WCET computation

� Three-step process
• Code generation: Ocarina / PolyORB-HI/Ada
• Analysis binary with Bound-T, retrofit to AADL models
• Evaluation using Cheddar

26

WCET computation

� Three-step process
• Code generation: Ocarina / PolyORB-HI/Ada
• Analysis binary with Bound-T, retrofit to AADL mode ls
• Evaluation using Cheddar

27

WCET computation

� Three-step process
• Code generation: Ocarina / PolyORB-HI/Ada
• Analysis binary with Bound-T, retrofit to AADL models
• Evaluation using Cheddar

28

Integration to Ocarina

� Issue: Bound-T walks through
all execution paths, including
useless (exception, drivers), or
unbounded (periodic task body)

� Solution: assertion file to guide
the analysis
� RTOS-dependent
� AADL runtime specific
� Generated from model

� Bound-T can now analyze
safely the whole system, user
code is “just” sequential C

o
p
y
ri
g
h
 T

id
o
ru

m
 L

td
.

page 29

AADL & other MDE frameworks

Integration with Simulink, SCADE et al.

AADL and other modeling notations

� AADL helps modeling architectures
� Capture key aspects of design: hardware/software
� Expression of some non functional properties: priority,

resource consumption, latency, jitter, …
� Enables: scheduling analysis, resource dimensioning,

mapping to formal methods, fault analysis, …

� Functional notations (Simulink, SCADE, ..)
describes precisely system behavior
� Provides a high-level behavioral/computational view
� mapped onto hardware/software elements

� Natural complement to ADLs
31

”Zero coding” paradigm

� Code generation from models is now a reality
� Proposed by many tools

� Functional models
� kcg: SCADE’s certified code generation
� Simulink Coder

� Architectural models
� Ocarina: AADL code generator for HIsystems

� Foundations for a “zero coding” approach
� Model, then integrate code generated from each view

� Issue: which integration process ?
� Two approaches, driven by user demand

32

Code generation patterns

� Each functional framework relies on same foundations
� Synchronous: discrete computation cycles
� Asynchronous: function calls

� SCADE/Simulink/Esterel: a 3-step process
� Fetch in parameters from AADL subprograms
� Call the reaction function to compute output values
� Send the output as out parameters of the AADL subprogram

� Architectural blocks are mapped onto programming
language equivalent constructs
� Ocarina relies on stringent coding guidelines to meet

requirements for High-Integrity systems, validated though test
harness by ESA, Thales, SEI, and their partners

33

From AADL + X tocode

� Ocarina handles all code integration aspects
� How to map AADL concepts to source code artefacts

(POSIX threads, Ada tasks, mutexes, ...)
� Handle portability concerns to several platforms, from

bare to native

� + some knowledge on how a SCADE or Simulink
models is mapped onto C code
� So that integration is done by the code generator
� No manual intervention required

� Supports “zero coding” approach
34

Application-driven process

� Functions may be defined first, then refined to
be bound to an existing architecture”

35

Architecture-driven process

� Reverse option: architecture is defined first, then
a skeleton of the functional model is deduced,
then implemented

subprogram spg_scade
features
input: in parameter integer {Source_Name => "add_input";};
output: out parameter integer {Source_Name => "add_output";};
properties

source_name => "inc";
source_language => Scade;
source_location => "/path/to/scade-code/";

end spg_scade;

36

How to bind to AADL models ?

� In both cases, we rely on standard AADLv2
patterns
� Source_Language <-> SCADE or Simulink
� Source_Name <-> SCADE node or Simulink block
� Source_Location <-> path to kcg orSimulink Coder

generated code

� Smooth integration of AADL and other functional
modeling
� Providing only required information
� While remaining 100% automatic 37

The ASSERT ESA demonstrator (2008)

38

Conclusion

� System are heterogeneous, so are models
� AADL separates architecture from functional models
� Allows reference from the architecture to function blocks

� Integration of AADL and SCADE or Simulink in to
perform full generation of systems is desirable

� Advantages
� “Zero coding” paradigm to ease integration work
� Quality of code generated for both functions and

architecture
� Opens the path towards qualification/certification of

complex embedded systems at model-level 39

