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Real-Time scheduling theory

1. A set of tasks models (to model functions of the system)

2. A set of analytical methods (feasiblility tests)
= E.g. Worst Case Response Time

< ' =C. 5 C.
R < Deadline R=C + Z = [C,
JChp() | 7 ]
3. Asetofschedulln% algorithms  : build the full
schedullng/GANT dlagram
-— . e TR
Task name=T1 Period= 5; Cap&c:ry Deadhne 5; Start time= 0; Priority= 1; Cpu=cpua
bbb bbb S bbb
Task name=T2 Period= 10; Capacity= 2; Deadline= 10; Start time= 0; Priority= 1; Cou=cpua
i — — W+ttt

Task name=T3 Period= 30; Capacity= 12; Deadline= 30; Start time= 0, Priority= 1, Cpu=cpusa
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Real-Time scheduling theory is hard to apply

0 Real-Time scheduling theory

= Theoretical results defined from 1974 to 1994
feasiblility tests exist for uniprocessor, periodic tasks,
shared resources

= Extension through simulation for other cases

0 Now supported at a decent level by POSIX 1003
RTOS, ARINC653, ...

O Industry demanding
= Yet, hard to use
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Real-Time scheduling theory is hard to apply

O Feasibility tests not always exist for modern architectures
= Multi-cores, distributed, asynchronous, hierarchical

O Requires strong theoretical knowledge
= Numerous theoretical results: how to choose the right one ?
= Numerous assumptions for each result.

= How to abstract/model a system to access schedulability ? (e.g.
task dependency)

O How to integrate scheduling analysis in the process ?
= When to apply it ? What about tools ?

It IS the role of an ADL to hide those detalls
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AADI. to the rescue ?

O AADL helps modeling a full system, including hardware,
task sets, connections, RTOS features, ...

O All of these elements are mandatory to apply real-time
scheduling theory

= Example: an AADL model can include periodic tasks and usual
scheduling policies

Worst case execution time (or WCET), period, deadline
Fixed priority scheduling

O However, in many cases, the models stay too complex
= Dependent tasks, shared buffers or buses, ...
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Real-time scheduling theory : models of task

O Task: sequence of statements + data + state.

BLOCKED READY

PENDED RUN

O Usual task types:
= Independent tasks or dependent tasks.

= Periodic and sporadic tasks (critical functions).
Aperiodic tasks (non critical functions).
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Real-time scheduling theory : models of task

Si Di Pi

A

Task i capacity  Task i release times

O Usual parameters of a periodic task i:

= Period: Pi (duration between two periodic release times). A task
starts a job for each release time.

= Deadline to meet: Di, timing constraint to meet, relative to the
period/job.

= First task release time (first job):  Si.
= Worst case execution time of each job:  Ci (or capacity or WCET).
= Priority: allows the scheduler to choose the task to run.
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Real-time scheduling theory : models of task

O Assumptions for the next slides (synchronous
periodic task with deadlines on requests):

= All tasks are periodic.
= All tasks are independent.

= Vi: Pi=Di : a task must end its current job before its next
release time.

= Vi: Si=0 => called critical instant (worst case on
processor demand).
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Uniprocessor usual real-time scheduling
policies

O On-line/off-line scheduling:  the scheduling is
computed before or at execution time?

O Fixed/dynamic priority scheduler:  priorities may
change at execution time?

O Preemptive or non preemptive scheduling: can we
stop a task during its execution ?

o Online, preemptive, fixed priority scheduler with Rate
Monotonic priority assignment (RM, RMS, RMA).
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Uniprocessor fixed priority scheduling

O Fixed priority scheduling :

= Scheduling based on fixed priority => critical
applications.

= Priorities are assigned at design time (off-line).
= Efficient and simple feasibility tests.

= Scheduler easy to implement into real-time operating
systems.

O Rate Monotonic priority assignment :

= Optimal assignment in the case of fixed priority
scheduling and uniprocessor.

= Periodic tasks only.
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Uniprocessor fixed priority scheduling

O Two steps:

1. Rate monotonic priority assignment:

the highest priority tasks have the smallest periods. Priorities
are assigned off-line (e.g. at design time, before execution).

2. Fixed priority scheduling

at any time, run the ready task which has the highest priority
level.
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Uniprocessor fixed priority scheduling

0 Rate Monotonic assignment and preemptive

fixed priority scheduling: T2 is preempted
Deadline
of T2
T2 LI T TP T T P [ [ [ B ]
Deadline Deadline Deadline
of T1 of T1 of T1
T1 EEEEEET [ [T PEETETETEET 1 PP [ [
0 6 10 16 20 26 27 30

= Assuming VxWorks priority levels (high=0 ; low=255)
= T1:C1=6, P1=10, Prio1=0
= T2:C2=9, P2=30, Prio2=1 page 14



Uniprocessor fixed priority scheduling

O Feasibility/Schedulability tests:

1.

page 15

Run simulations on hyperperiod = [0,LCM(P1)].
Sufficient and necessary (exact result). Any priority
assignment and preemptive/non preemptive scheduling.

Processor utilization factor test:

1
U=)Yi,Ci/Pi <n.(2rn-1)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary. Does not compute an exact
result.

Task worst case response time, noted ri  : delay
between task release time and task end time. Sometime
an exact result. Any priority assignment but preemptive
scheduling.



Uniprocessor fixed priority scheduling

O Compute ri1, task 1 worst case response time:

= Assumptions: preemptive scheduling, synchronous
periodic tasks.

= Task i response time = task i capacity + delay the task i
has to wait for higher priority task j. Or:

R=C+ Zwaitingtimeduetoj or R=C + Z R T.

jOhp(i) j0hp(i) PJ

= hp(i) is the set of tasks which have a higher priority than
task i. [x] returns the smallest integer not smaller than x.
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Uniprocessor fixed priority scheduling

0 To compute task response time: compute wi® with:

wi = Ci + ¥ ieppiy|[Wi" 1/ Pj|. Cj

0 Start with wi®=Ci.
0 Compute wil, wi?, wi3, ...wi¥ upto:

= If wi* >Pi. No task response time can be computed for
task i. Deadlines will be missed !

w If wi* = wi*=1, wik is the task i response time. Deadlines
will be met.
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Uniprocessor fixed priority scheduling

o Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

wl®=C1=3=7r1=3

w20 =C2=2
) W20 2]
w2 =C2+ﬁ.61=2+7.3=5
w2!] 5
W22=C2+W.61:2+7.3=5$7"2=5
w3 =(C3=5
. (w30°] (w3°]
w3 =C3+ﬁCl+EC2=1O
5 (w31] (w31]
w3 =C3+WC1+ﬁC2=13
5 (w3?] (w3?]
w3 =C3+W.C1+ ﬁ62=15
(w33] (w33]
W34=C3+W.C1+ ﬁ62=18
c (w34 (w34]
w3 =C3+ﬁ61+ﬁC2=18$r3=18
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Uniprocessor fixed priority scheduling

O Example with the AADL case study:.
= “display_panel” thread which displays data. P=100, C=20.
= “receiver’ thread which sends data. P=250, C=50.
= “analyser” thread which analyzes data. P=500, C=150.

O Processor utilization factor test:
= U=20/100+150/500+50/250=0.7
1
= Bound=3.(23 — 1)=0.779

m U<Bound => deadlines will be met.

O Task response time: R_analyser=330, R_display_panel=20,
R_receiver=70.

o Run simulations on hyperperiod:  [0,LCM(P1)] = [0,500].
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Uniprocessor fixed priority scheduling

Response times = 20

>

display_ panel [T T 1T [ [ [ [ [l [ [T [ [ [T T T T T T Tl T T T T T T T T T T 111

0 100 200 220 300 400 500

receiver [T IR [ [T [T [T T T I T T T [T T T TITTTTITTT]

0 76‘\\\\ 250 535\\\ 500

Response time = 70 Response time = 50

analyzer [T T[T [ [0 [ [ [ el [ [ [ [ [T [[[[[[[TTT[[TTT]

///”////;;o

0 Response time = 330 500
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FFixed priority and shared resources

O Previous tasks were independent ... does not
really exist in true life.

O Task dependencies

m Shared resources.

E.g. with AADL: threads may wait for AADL protected data
component access.

m Precedencies between tasks.

E.g with AADL.: threads exchange data by data port
connections.
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FFixed priority and shared resources

O Shared resources are usually modeled by semaphores.
O We use specific semaphores implementing inheritance protocols:

To take care of priority inversion.

To compute worst case task blocking time for the access to a
shared resource. Blocking time Bi.

O Inheritance protocols:

page

PIP (Priority inheritance protocol), can not be used with more than
one shared resource due to deadlock.

PCP (Priority Ceiling Protocol) , implemented in most of real-time
operating systems (e.g. VxWorks).

Several implementations of PCP exists: OPCP, ICPP, ...

22



Fixed priority and shared resources

O What is Priority inversion:  a low priority task blocks a
high priority task

Task is preempted

s,
.

P(mutex) ’ ‘ V(mutex)
T1 (low) | ] i -
0 1
h P(mutex) V(mutex)
T3 (high) —% - e
4 2 3 Tasll'{"is blocked
T2 (medium) —
L7 e 1 4

O BiI = worst case on the shared resource waiting time.
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Fixed priority and shared resources

Priority of T1= ceiling priority of « mutex » = high

Priority of T1= initial priority of T1 = low
P(mutex) "

mutex)
. P
T1 (low) |
0 1 2
l P(mutex)  V(mutex)
{ ‘

Task release times

o ICPP (Immediate Celling Priority Protocol):

= Ceiling priority of a resource = maximum static priority of the tasks
which use it.

= Dynamic task priority = maximum of its own static priority and the
ceiling priorities of any resources it has locked.

= Bi=longest critical section ; prevent deadlocks
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FFixed priority and shared resources

O How to take into account the waiting time Bi:

m Processor utilization factor test :

. . 1
i—1 Ck  Ci+Bi . =

g — < .(2i—1
k=1p T = L )

Vi,l <i<n:)

= Worst case response time

R=B+C + Z R [C.

jOhp(i) I:)J

i,
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To conclude on scheduling analysis

= Many feasibility tests: depending on task, processor, scheduler, shared
resource parameters or dependencies. What about uniprocessor or

multiprocessor or hierarchical or distributed?

R=C+ ), {ﬂmj

jOhp(i)] * j

= Many assumptions : require preemptive and fixed priority scheduling,
synchronous periodic independent tasks with deadlines on requests ...

Many feasibility tests .... Many assumptions ...
How to choose them?
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AADL to the rescue ?

O Issues:

= Ensure all required model elements are given for the analysis

= Ensure model elements are compliant with analysis
reguirements

O AADL helps because:

= AADL as a pivot language between tools. International
standard.

= Close to the real-time scheduling theory: real-time scheduling
concepts can be found. Ex:
Component categories: thread, data, processor
Property sets: Thread Properties,

Timing_Properties , Communication_Properties
page 28 AADL Project



Property sets for scheduling analysis

O Properties related to processor:

Preemptive_Scheduler . aadl bool ean applies to (processor);

Scheduling_Protocol
i nherit |ist of Supported Scheduling Protocols
applies to (virtual processor, processor);
-- RATE_MONOTONIC_PROTOCOL,
-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ..
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Property sets for scheduling analysis

O Properties related to the threads/data:

Compute Execution_Time : Time_Range
applies to (thread, subprogram, ...);

Deadline : inherit Time => Period applies to (thread, ...);

Period : inherit Time applies to (thread, ...);

Dispatch_Protocol : Supported_Dispatch_Protocols

applies to (thread);
-- Periodic, Sporadic, Timed, Hybrid, Aperiodic , Backgroil
Priority  : inherit aadlinteger applies to (thread, ..., data

Concurrency_Control_Protocol
Supported _Concurrency_Control_Protocols applies to (date

page 30 - None, PCP, ICPP, ...



Property sets for scheduling analysis

O Example:

thread implementation receiver.impl
properties
Dispatch_Protocol => Periodic;
Compute_Execution_Time=> 31 ms.. 50 ms,
Deadline => 250 ms;
Period => 250 ms;
end receiver.impl;

data implementation
properties
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;
end target_position.impl;

target_position.impl

page 31

process implementation processing.others
subcomponents
receiver : thread receiver.impl;
anayzer : thread analyzer.impl;
target : data target_position.impl;

processor implementation leon2
properties
Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL;
Preemptive_Scheduler => true;

end leon2;

system implementation radar.simple
subcomponents
main : process processing.others;
Cpu : processor leon2;
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Cheddar : a framework to access
schedulability

O Cheddar tool =

analysis framework (queueing system theory & real-time scheduling theory)
+ internal ADL (architecture description language)

+ various standard ADL parsers (AADL, MARTE UML)

+ simple model editor.

o Two versions :
= Open source (Cheddar) : educational and research.
= Industrial (AADLInspector) : Ellidiss Tech product.

O Supports : Ellidiss Tech., Conseil regional de Bretagne, BMO,
EGIDE/Campus France, Thales Communication

O AADL is arich language : Cheddar proposes designp  atterns to
help engineers to select relevant feasibility tests
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A “design pattern” approach to increase
real-time scheduling usability

Define a set of AADL design patterns of real-time s  ystems.
= models a typical thread communication or synchronization.
= set of constraints on entities of the AADL model.

For each design pattern, define feasibility testst  hat can be
applied according to their applicability assumption S.

Schedulability analysis of a AADL model:

1. Checks compliancy of the AADL model with one of the design-
patterns ... which then gives which feasibility tests can be applied.

2. Compute these feasibility tests.
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A “design pattern” approach to increase
real-time scheduling usability

O  Specification of various design patterns:

Time-triggered : time triggered architecture (data port
connection)

Ravenscar : shared data and PCP (data component).
Black board : readers/writers synchronization
Queued buffer : producer/consumer synchronization

Compositions of design patterns.

O Example of the Ravenscar design-pattern
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The «Ravenscar» design pattern

O Ravenscar:
m Part of the Ada 1995 standard

= A set of guidelines/constraints to enable efficient and deterministic task
scheduling of Ada programs

m Later extended to Java RTSJ, C/POSIX, and AADL

O Objective: remove all that prevent Ada programs ana  lysis
1. All Ada tasks are either periodic or sporadic
2. Communication through shared data, no Ada rendez-vous
3. Shared data protected by PCP
4. Static, no dynamic creation of Ada tasks
5. Fixed priority preemptive scheduling similar to POSIX 1003

0  Feasibility test to compute:  worst case thread response time + thread
blocking time due to data component access.
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The «Ravenscar» design pattern

0 Radar Example:

thread implementation receiver.impl
properties
Dispatch_Protocol => Periodic;
Compute_Execution_Time=> 31 ms.. 50 ms,
Deadline => 250 ms;
Period => 250 ms;
end receiver.impl;

data implementation
properties
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;
end target_position.impl;

target_position.impl

page 37

process implementation processing.others
subcomponents
receiver : thread receiver.impl;
anayzer : thread analyzer.impl;
target : data target_position.impl;

processor implementation leon2
properties
Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL;
Preemptive_Scheduler => true;

end leon2;

system implementation radar.simple
subcomponents
main : process processing.others;
Cpu : processor leon2;



The «Ravenscar» design pattern

Demos:
Scheduling analysis of the radar example with Cheddar
.. And with AADLInspector also

43 AADLinspector (Cy/ProjetsfAADLInspector/Al-1.2/examples/arincsimple2.aadl ) =8 =

File View Tools

EEE 2B File  Edit View Tools Help

mple2 7 ity [Schedule Table] Consistency | Legaiity] Metrics| Naming | Qlﬁ!@|@|ﬂ| @5'%|D|:l
arincsimple2 | ARINCSS3 | g
[eacwace arincsimple_Pkg A

arin

2 |PUBLIC | test entity 2 L 1
& { | Task name=T1  Period= 15: Capacity= 5 Dealine= 15; Start time= 0; Priority= 1; Cpu=arinc
3 |WITH ARINCGS3: | & @Fask response time computed from simulatio  cpu No deadline mis e e
4 Number of preemptions cpu 4 1
5 |SYSTEM arincsimple : I
& |[END arinsimple; Number of contedt switches cpu . Taskneme=T2  Periog= 151, Capacity=17: Deadline= 151; Start time= 0; Pricrity= 1; Cpu=arinc
7 Task response time computed from simulatio  cpu.partitionl_pr.T worst =5, best =
8 |SYSTEM IMPLEMENTATION arincsimple.others = Task response time computed from simulatio  cpu.partitionl_pr.T  worst = 15, best | | }
|
2 | SHRCOMEGUENTS Task response time computed from simulatio  cpu.partition2_pr1  worst = 15, best| Taskname=T3  Period= 20; Capscity= 3, Desdline= 20 Start time= 0; Prionty= 1; Gpu=arinc

10| ecpu : PROCESSOR powerpc.impl;

11| parcitionl pr : PROCESS partitionl _process.impl:
12| partivion2 pr : PROCESS partition2 process.impl;
13|PROPERTIES

Set priorities according to Rate Monotonic  cpu

Set priorities according to Deadline Monctoni  cpu
— . . Taskname=T4  Period= 6; Capacity= 1; Desdline=6; Start time= 0; Priority= 1, Cpu=srinc

i, »

14| Actuel Processor Binding => ( REFERENCE (cpu.partl) ) APEL /
15| Actual Processor_Binding => ( REFERENCE (cpu.part2) ) APPL T P T I I - = (3 S |

!GIE.‘!D arincsimple.others; P> O E 20 40 llil IIIU 14-0 180

18|PROCESSOR powerpc cpu ‘

18|END powezpcs: 2]

20| r

T ——— ‘ Scheduling simulation, Processor arinc :
22 |SUBCCMPONENTS ion2orT2] M W m W m w m = - Number of preemptions : 760
23| parcl : VIRTUAL PROCESSOR parctitionl rt.impl: e ‘ - Number of context switches : 3205

é:;ag;;ilés"m’“ﬂ EROCESSER pATL I Fondo voh tmel s patitionzpr{ N EE EN EE BN BN =S B - Task response time computed from simulation @

26| Scheduling Protocol => ARINC653: itiont_pr.T34 i — N — 1= P 6/worst 6/best 6.00000/average

Pk on ks M meyl Al o T2 => 56/worst 35/best 46.81667/average

25| MZINCESS..,n;;l’.;_nujﬂr_Frme>‘“; 20ms: fprreily el === —— T3 => 10/worst 4/best 6.00000/average

30/END powespe. impl; partition_pr{ I S - - T4 => 1/worst 1/best 1.00000/average )

= — No deadline missed in the computed scheduling : the task set =&
32|VIRTUAL PROCESSOR partitionl re -

seems to be schedulable.

. v -

Simulator Stop
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