
AADL : about scheduling

analysis

Summary

1. Issues about real-time scheduling : AADL to the
rescue

2. Focus on fixed-priority scheduling:
� Basics on uniprocessor

3. AADL components/properties to scheduling
analysis

4. An example with Cheddar

page 2

1. A set of tasks models (to model functions of the system)
2. A set of analytical methods (feasibility tests)

� E.g. Worst Case Response Time

3. A set of scheduling algorithms : build the full
scheduling/GANTT diagram

Real-Time scheduling theory

page 3

DeadlineRi ≤ j
ihpj j

i
ii C

P

R
CR ⋅












+= ∑

∈)(

Real-Time scheduling theory is hard to apply

� Real-Time scheduling theory
� Theoretical results defined from 1974 to 1994:

feasibility tests exist for uniprocessor, periodic tasks,
shared resources

� Extension through simulation for other cases

� Now supported at a decent level by POSIX 1003
RTOS, ARINC653, …

� Industry demanding
� Yet, hard to use

page 4

Real-Time scheduling theory is hard to apply

� Feasibility tests not always exist for modern architectures
� Multi-cores, distributed, asynchronous, hierarchical

� Requires strong theoretical knowledge
� Numerous theoretical results: how to choose the right one ?
� Numerous assumptions for each result.
� How to abstract/model a system to access schedulability ? (e.g.

task dependency)

� How to integrate scheduling analysis in the process ?
� When to apply it ? What about tools ?

It is the role of an ADL to hide those details

page 5

AADL to the rescue ?

� AADL helps modeling a full system, including hardware,
task sets, connections, RTOS features, …

� All of these elements are mandatory to apply real-time
scheduling theory
� Example: an AADL model can include periodic tasks and usual

scheduling policies
� Worst case execution time (or WCET), period, deadline
� Fixed priority scheduling

� However, in many cases, the models stay too complex
� Dependent tasks, shared buffers or buses, …

page 6

Summary

1. Issues about real-time scheduling : AADL to the
rescue

2. Focus on fixed-priority scheduling:
� Basics on uniprocessor

3. AADL components/properties to scheduling
analysis

4. An example with Cheddar

page 7

Real-time scheduling theory : models of task

� Task: sequence of statements + data + state.

� Usual task types:
� Independent tasks or dependent tasks.
� Periodic and sporadic tasks (critical functions).

Aperiodic tasks (non critical functions).

page 8

Real-time scheduling theory : models of task

� Usual parameters of a periodic task i:
� Period: Pi (duration between two periodic release times). A task

starts a job for each release time.
� Deadline to meet: Di, timing constraint to meet, relative to the

period/job.
� First task release time (first job): Si.
� Worst case execution time of each job: Ci (or capacity or WCET).
� Priority: allows the scheduler to choose the task to run.

page 9

Real-time scheduling theory : models of task

�

page 10

Uniprocessor usual real-time scheduling

policies

� On-line/off-line scheduling: the scheduling is
computed before or at execution time?

� Fixed/dynamic priority scheduler: priorities may
change at execution time?

� Preemptive or non preemptive scheduling: can we
stop a task during its execution ?

� Online, preemptive, fixed priority scheduler with Rate
Monotonic priority assignment (RM, RMS, RMA).

page 11

Uniprocessor fixed priority scheduling

� Fixed priority scheduling :
� Scheduling based on fixed priority => critical

applications.
� Priorities are assigned at design time (off-line).
� Efficient and simple feasibility tests.
� Scheduler easy to implement into real-time operating

systems.

� Rate Monotonic priority assignment :
� Optimal assignment in the case of fixed priority

scheduling and uniprocessor.
� Periodic tasks only.

page 12

Uniprocessor fixed priority scheduling

� Two steps:
1. Rate monotonic priority assignment:

� the highest priority tasks have the smallest periods. Priorities
are assigned off-line (e.g. at design time, before execution).

2. Fixed priority scheduling :
� at any time, run the ready task which has the highest priority

level.

page 13

Uniprocessor fixed priority scheduling

� Rate Monotonic assignment and preemptive
fixed priority scheduling:

� Assuming VxWorks priority levels (high=0 ; low=255)
� T1 : C1=6, P1=10, Prio1=0
� T2 : C2=9, P2=30, Prio2=1 page 14

Uniprocessor fixed priority scheduling

page 15

� Feasibility/Schedulability tests:
1. Run simulations on hyperperiod = [0,LCM(Pi)].

Sufficient and necessary (exact result). Any priority
assignment and preemptive/non preemptive scheduling.

2. Processor utilization factor test:

� = ∑ ��/���
	
� ≤
. (2

�

�-1)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary. Does not compute an exact
result.

3. Task worst case response time, noted ri : delay
between task release time and task end time. Sometime
an exact result. Any priority assignment but preemptive
scheduling.

Uniprocessor fixed priority scheduling

page 16

� Compute ri, task i worst case response time:
� Assumptions: preemptive scheduling, synchronous

periodic tasks.

� Task i response time = task i capacity + delay the task i
has to wait for higher priority task j. Or:

� hp(i) is the set of tasks which have a higher priority than
task i. � returns the smallest integer not smaller than x.

j
ihpj j

i
ii C

P

R
CRor ⋅












+= ∑

∈)(

 ∑
∈

+=
)(

ihpj

ii jtoduetimewaitingCR

Uniprocessor fixed priority scheduling

�

page 17

Uniprocessor fixed priority scheduling

page 18

�3� = �3 = 5

�3� = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 10

�3� = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 13

�3� = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 15

�3� = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 18

�3 = C3 +
�3�

�1
. �1 +

�3�

�2
. �2 = 18 ⇒ "3 = 18

� Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

�1� = �1 = 3 ⇒ "1 = 3

�2� = �2 = 2

�2� = C2 +
�2�

�1
. �1 = 2 +

2

7
. 3 = 5

�2� = C2 +
�2�

�1
. �1 = 2 +

5

7
. 3 = 5 ⇒ "2 = 5

Uniprocessor fixed priority scheduling

page 19

� Example with the AADL case study:
� “display_panel” thread which displays data. P=100, C=20.
� “receiver” thread which sends data. P=250, C=50.
� “analyser” thread which analyzes data. P=500, C=150.

� Processor utilization factor test:
� U=20/100+150/500+50/250=0.7

� Bound=3.(2
�

$ − 1)=0.779
� U≤Bound => deadlines will be met.

� Task response time: R_analyser=330, R_display_panel=20,
R_receiver=70.

� Run simulations on hyperperiod: [0,LCM(Pi)] = [0,500].

Uniprocessor fixed priority scheduling

page 20

Fixed priority and shared resources

� Previous tasks were independent … does not
really exist in true life.

� Task dependencies :
� Shared resources.

� E.g. with AADL: threads may wait for AADL protected data
component access.

� Precedencies between tasks.
� E.g with AADL: threads exchange data by data port

connections.

page 21

Fixed priority and shared resources

� Shared resources are usually modeled by semaphores.
� We use specific semaphores implementing inheritance protocols:

� To take care of priority inversion.
� To compute worst case task blocking time for the access to a

shared resource. Blocking time Bi.

� Inheritance protocols:
� PIP (Priority inheritance protocol), can not be used with more than

one shared resource due to deadlock.
� PCP (Priority Ceiling Protocol) , implemented in most of real-time

operating systems (e.g. VxWorks).
� Several implementations of PCP exists: OPCP, ICPP, …

page 22

Fixed priority and shared resources

� What is Priority inversion: a low priority task blocks a
high priority task

� Bi = worst case on the shared resource waiting time.

page 23

Fixed priority and shared resources

� ICPP (Immediate Ceiling Priority Protocol):
� Ceiling priority of a resource = maximum static priority of the tasks

which use it.
� Dynamic task priority = maximum of its own static priority and the

ceiling priorities of any resources it has locked.
� Bi=longest critical section ; prevent deadlocks

page 24

Fixed priority and shared resources

page 25

� How to take into account the waiting time Bi:

� Processor utilization factor test :

∀	�, 1	 ≤ �	 ≤
 ∶ 	∑
*+

,+
+

*	-.	

,	

	/�
+
� ≤ 		�. (2

�

0 − 1)

� Worst case response time :

j
ihpj j

i
iii C

P

R
CBR ⋅












++= ∑

∈)(

To conclude on scheduling analysis

� Many feasibility tests: depending on task, processor, scheduler, shared
resource parameters or dependencies. What about uniprocessor or
multiprocessor or hierarchical or distributed?

� Many assumptions : require preemptive and fixed priority scheduling,
synchronous periodic independent tasks with deadlines on requests …

Many feasibility tests …. Many assumptions …
How to choose them?

page 26

j
ihpj j

i
ii C

P

R
CR ⋅












+= ∑

∈)(

Summary

1. Issues about real-time scheduling : AADL to the
rescue

2. Focus on fixed-priority scheduling:
� Basics on uniprocessor

3. AADL components/properties to scheduling
analysis

4. An example with Cheddar

page 27

AADL to the rescue ?

� Issues:
� Ensure all required model elements are given for the analysis
� Ensure model elements are compliant with analysis

requirements

� AADL helps because:
� AADL as a pivot language between tools. International

standard.
� Close to the real-time scheduling theory: real-time scheduling

concepts can be found. Ex:
� Component categories: thread, data, processor
� Property sets: Thread_Properties,

Timing_Properties , Communication_Properties ,
AADL_Projectpage 28

Property sets for scheduling analysis

page 29

Preemptive_Scheduler : aadlboolean applies to (processor);

Scheduling_Protocol :
inherit list of Supported_Scheduling_Protocols
applies to (virtual processor, processor);

-- RATE_MONOTONIC_PROTOCOL,
-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ..

� Properties related to processor:

Property sets for scheduling analysis

page 30

Compute_Execution_Time : Time_Range
applies to (thread, subprogram, …);

Deadline : inherit Time => Period applies to (thread, …);

Period : inherit Time applies to (thread, …);

Dispatch_Protocol : Supported_Dispatch_Protocols
applies to (thread);

-- Periodic, Sporadic, Timed, Hybrid, Aperiodic , Background,
...

Priority : inherit aadlinteger applies to (thread, …, data

Concurrency_Control_Protocol :
Supported_Concurrency_Control_Protocols applies to (data);

-- None, PCP, ICPP, …

� Properties related to the threads/data:

thread implementation receiver.impl

properties

Dispatch_Protocol => Periodic;

Compute_Execution_Time => 31 ms .. 50 ms;

Deadline => 250 ms;

Period => 250 ms;

end receiver.impl;

data implementation target_position.impl

properties

Concurrency_Control_Protocol

=> PRIORITY_CEILING_PROTOCOL;

end target_position.impl;

process implementation processing.others
subcomponents

receiver : thread receiver.impl;
analyzer : thread analyzer.impl;
target : data target_position.impl;
. . .

processor implementation leon2

properties

Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL;

Preemptive_Scheduler => true;

end leon2;

system implementation radar.simple
subcomponents

main : process processing.others;
cpu : processor leon2;
. . .

Property sets for scheduling analysis

page 31

� Example:

Summary

1. Issues about real-time scheduling : AADL to the
rescue

2. Focus on fixed-priority scheduling:
� Basics on uniprocessor

3. AADL components/properties to scheduling
analysis

4. An example with Cheddar

page 32

Cheddar : a framework to access

schedulability

� Cheddar tool =
analysis framework (queueing system theory & real-time scheduling theory)

+ internal ADL (architecture description language)

+ various standard ADL parsers (AADL, MARTE UML)

+ simple model editor.

� Two versions :
� Open source (Cheddar) : educational and research.

� Industrial (AADLInspector) : Ellidiss Tech product.

� Supports : Ellidiss Tech., Conseil régional de Bretagne, BMO,
EGIDE/Campus France, Thales Communication

� AADL is a rich language : Cheddar proposes design p atterns to
help engineers to select relevant feasibility tests

page 33

� Define a set of AADL design patterns of real-time s ystems.
= models a typical thread communication or synchronization.

= set of constraints on entities of the AADL model.

� For each design pattern, define feasibility tests t hat can be
applied according to their applicability assumption s.

� Schedulability analysis of a AADL model:
1. Checks compliancy of the AADL model with one of the design-

patterns … which then gives which feasibility tests can be applied.

2. Compute these feasibility tests.

A “design pattern” approach to increase

real-time scheduling usability

page 34

A “design pattern” approach to increase

real-time scheduling usability

� Specification of various design patterns:
• Time-triggered : time triggered architecture (data port

connection)
• Ravenscar : shared data and PCP (data component).
• Black board : readers/writers synchronization
• Queued buffer : producer/consumer synchronization
• …
• Compositions of design patterns.

� Example of the Ravenscar design-pattern .

page 35

The «Ravenscar» design pattern

� Ravenscar:
� Part of the Ada 1995 standard
� A set of guidelines/constraints to enable efficient and deterministic task

scheduling of Ada programs
� Later extended to Java RTSJ, C/POSIX, and AADL

� Objective: remove all that prevent Ada programs ana lysis
1. All Ada tasks are either periodic or sporadic
2. Communication through shared data, no Ada rendez-vous
3. Shared data protected by PCP
4. Static, no dynamic creation of Ada tasks
5. Fixed priority preemptive scheduling similar to POSIX 1003

� Feasibility test to compute: worst case thread response time + thread
blocking time due to data component access.

page 36

thread implementation receiver.impl

properties

Dispatch_Protocol => Periodic;

Compute_Execution_Time => 31 ms .. 50 ms;

Deadline => 250 ms;

Period => 250 ms;

end receiver.impl;

data implementation target_position.impl

properties

Concurrency_Control_Protocol

=> PRIORITY_CEILING_PROTOCOL;

end target_position.impl;

process implementation processing.others
subcomponents

receiver : thread receiver.impl;
analyzer : thread analyzer.impl;
target : data target_position.impl;
. . .

processor implementation leon2

properties

Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL;

Preemptive_Scheduler => true;

end leon2;

system implementation radar.simple
subcomponents

main : process processing.others;
cpu : processor leon2;
. . .

The «Ravenscar» design pattern

page 37

� Radar Example:

The «Ravenscar» design pattern

page 38

� Demos:
�Scheduling analysis of the radar example with Cheddar
.. And with AADLInspector also

