AADL : about scheduling
analysis

Summary

1.

3.

4.

Issues about real-time scheduling : AADL to the
rescue

Focus on fixed-priority scheduling:
= Basics on uniprocessor

AADL components/properties to scheduling
analysis

An example with Cheddar

page 2

Real-Time scheduling theory

1. A set of tasks models (to model functions of the system)

2. A set of analytical methods (feasiblility tests)
= E.g. Worst Case Response Time

< ' =C. 5 C.
R < Deadline R=C + Z = [C,
JChp() | 7]
3. Asetofschedulln% algorithms : build the full
schedullng/GANT dlagram
-— . e TR
Task name=T1 Period= 5; Cap&c:ry Deadhne 5; Start time= 0; Priority= 1; Cpu=cpua
bbb bbb S bbb
Task name=T2 Period= 10; Capacity= 2; Deadline= 10; Start time= 0; Priority= 1; Cou=cpua
i — — W+ttt

Task name=T3 Period= 30; Capacity= 12; Deadline= 30; Start time= 0, Priority= 1, Cpu=cpusa

page 3

Real-Time scheduling theory is hard to apply

0 Real-Time scheduling theory

= Theoretical results defined from 1974 to 1994
feasiblility tests exist for uniprocessor, periodic tasks,
shared resources

= Extension through simulation for other cases

0 Now supported at a decent level by POSIX 1003
RTOS, ARINC653, ...

O Industry demanding
= Yet, hard to use

page 4

Real-Time scheduling theory is hard to apply

O Feasibility tests not always exist for modern architectures
= Multi-cores, distributed, asynchronous, hierarchical

O Requires strong theoretical knowledge
= Numerous theoretical results: how to choose the right one ?
= Numerous assumptions for each result.

= How to abstract/model a system to access schedulability ? (e.g.
task dependency)

O How to integrate scheduling analysis in the process ?
= When to apply it ? What about tools ?

It IS the role of an ADL to hide those detalls

page 5

AADI. to the rescue ?

O AADL helps modeling a full system, including hardware,
task sets, connections, RTOS features, ...

O All of these elements are mandatory to apply real-time
scheduling theory

= Example: an AADL model can include periodic tasks and usual
scheduling policies

Worst case execution time (or WCET), period, deadline
Fixed priority scheduling

O However, in many cases, the models stay too complex
= Dependent tasks, shared buffers or buses, ...

page 6

Summary

1.

3.

4.

Issues about real-time scheduling : AADL to the
rescue

Focus on fixed-priority scheduling:
= Basics on uniprocessor

AADL components/properties to scheduling
analysis

An example with Cheddar

page 7

Real-time scheduling theory : models of task

O Task: sequence of statements + data + state.

BLOCKED READY

PENDED RUN

O Usual task types:
= Independent tasks or dependent tasks.

= Periodic and sporadic tasks (critical functions).
Aperiodic tasks (non critical functions).

page 8

Real-time scheduling theory : models of task

Si Di Pi

A

Task i capacity Task i release times

O Usual parameters of a periodic task i:

= Period: Pi (duration between two periodic release times). A task
starts a job for each release time.

= Deadline to meet: Di, timing constraint to meet, relative to the
period/job.

= First task release time (first job): Si.
= Worst case execution time of each job: Ci (or capacity or WCET).
= Priority: allows the scheduler to choose the task to run.

page 9

Real-time scheduling theory : models of task

O Assumptions for the next slides (synchronous
periodic task with deadlines on requests):

= All tasks are periodic.
= All tasks are independent.

= Vi: Pi=Di : a task must end its current job before its next
release time.

= Vi: Si=0 => called critical instant (worst case on
processor demand).

page 10

Uniprocessor usual real-time scheduling
policies

O On-line/off-line scheduling: the scheduling is
computed before or at execution time?

O Fixed/dynamic priority scheduler: priorities may
change at execution time?

O Preemptive or non preemptive scheduling: can we
stop a task during its execution ?

o Online, preemptive, fixed priority scheduler with Rate
Monotonic priority assignment (RM, RMS, RMA).

page 11

Uniprocessor fixed priority scheduling

O Fixed priority scheduling :

= Scheduling based on fixed priority => critical
applications.

= Priorities are assigned at design time (off-line).
= Efficient and simple feasibility tests.

= Scheduler easy to implement into real-time operating
systems.

O Rate Monotonic priority assignment :

= Optimal assignment in the case of fixed priority
scheduling and uniprocessor.

= Periodic tasks only.
page 12

Uniprocessor fixed priority scheduling

O Two steps:

1. Rate monotonic priority assignment:

the highest priority tasks have the smallest periods. Priorities
are assigned off-line (e.g. at design time, before execution).

2. Fixed priority scheduling

at any time, run the ready task which has the highest priority
level.

page 13

Uniprocessor fixed priority scheduling

0 Rate Monotonic assignment and preemptive

fixed priority scheduling: T2 is preempted
Deadline
of T2
T2 LI T TP T T P [[[B]
Deadline Deadline Deadline
of T1 of T1 of T1
T1 EEEEEET [[T PEETETETEET 1 PP [[
0 6 10 16 20 26 27 30

= Assuming VxWorks priority levels (high=0 ; low=255)
= T1:C1=6, P1=10, Prio1=0
= T2:C2=9, P2=30, Prio2=1 page 14

Uniprocessor fixed priority scheduling

O Feasibility/Schedulability tests:

1.

page 15

Run simulations on hyperperiod = [0,LCM(P1)].
Sufficient and necessary (exact result). Any priority
assignment and preemptive/non preemptive scheduling.

Processor utilization factor test:

1
U=)Yi,Ci/Pi <n.(2rn-1)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary. Does not compute an exact
result.

Task worst case response time, noted ri : delay
between task release time and task end time. Sometime
an exact result. Any priority assignment but preemptive
scheduling.

Uniprocessor fixed priority scheduling

O Compute ri1, task 1 worst case response time:

= Assumptions: preemptive scheduling, synchronous
periodic tasks.

= Task i response time = task i capacity + delay the task i
has to wait for higher priority task j. Or:

R=C+ Zwaitingtimeduetoj or R=C + Z R T.

jOhp(i) j0hp(i) PJ

= hp(i) is the set of tasks which have a higher priority than
task i. [x] returns the smallest integer not smaller than x.

page 16

\J

Uniprocessor fixed priority scheduling

0 To compute task response time: compute wi® with:

wi = Ci + ¥ ieppiy|[Wi" 1/ Pj|. Cj

0 Start with wi®=Ci.
0 Compute wil, wi?, wi3, ...wi¥ upto:

= If wi* >Pi. No task response time can be computed for
task i. Deadlines will be missed !

w If wi* = wi*=1, wik is the task i response time. Deadlines
will be met.

page 17

Uniprocessor fixed priority scheduling

o Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

wl®=C1=3=7r1=3

w20 =C2=2
) W20 2]
w2 =C2+ﬁ.61=2+7.3=5
w2!] 5
W22=C2+W.61:2+7.3=5$7"2=5
w3 =(C3=5
. (w30°] (w3°]
w3 =C3+ﬁCl+EC2=1O
5 (w31] (w31]
w3 =C3+WC1+ﬁC2=13
5 (w3?] (w3?]
w3 =C3+W.C1+ ﬁ62=15
(w33] (w33]
W34=C3+W.C1+ ﬁ62=18
c (w34 (w34]
w3 =C3+ﬁ61+ﬁC2=18$r3=18

page 18

Uniprocessor fixed priority scheduling

O Example with the AADL case study:.
= “display_panel” thread which displays data. P=100, C=20.
= “receiver’ thread which sends data. P=250, C=50.
= “analyser” thread which analyzes data. P=500, C=150.

O Processor utilization factor test:
= U=20/100+150/500+50/250=0.7
1
= Bound=3.(23 — 1)=0.779

m U<Bound => deadlines will be met.

O Task response time: R_analyser=330, R_display_panel=20,
R_receiver=70.

o Run simulations on hyperperiod: [0,LCM(P1)] = [0,500].

page 19

Uniprocessor fixed priority scheduling

Response times = 20

>

display_ panel [T T 1T [[[[[l [[T [[[T T T T T T Tl T T T T T T T T T T 111

0 100 200 220 300 400 500

receiver [T IR [[T [T [T T T I T T T [T T T TITTTTITTT]

0 76‘\\\\ 250 535\\\ 500

Response time = 70 Response time = 50

analyzer [T T[T [[0 [[[el [[[[[T [[[[[[[TTT[[TTT]

///”////;;o

0 Response time = 330 500

page 20

FFixed priority and shared resources

O Previous tasks were independent ... does not
really exist in true life.

O Task dependencies

m Shared resources.

E.g. with AADL: threads may wait for AADL protected data
component access.

m Precedencies between tasks.

E.g with AADL.: threads exchange data by data port
connections.

page 21

FFixed priority and shared resources

O Shared resources are usually modeled by semaphores.
O We use specific semaphores implementing inheritance protocols:

To take care of priority inversion.

To compute worst case task blocking time for the access to a
shared resource. Blocking time Bi.

O Inheritance protocols:

page

PIP (Priority inheritance protocol), can not be used with more than
one shared resource due to deadlock.

PCP (Priority Ceiling Protocol) , implemented in most of real-time
operating systems (e.g. VxWorks).

Several implementations of PCP exists: OPCP, ICPP, ...

22

Fixed priority and shared resources

O What is Priority inversion: a low priority task blocks a
high priority task

Task is preempted

s,
.

P(mutex) ’ ‘ V(mutex)
T1 (low) |] i -
0 1
h P(mutex) V(mutex)
T3 (high) —% - e
4 2 3 Tasll'{"is blocked
T2 (medium) —
L7 e 1 4

O BiI = worst case on the shared resource waiting time.

page 23

Fixed priority and shared resources

Priority of T1= ceiling priority of « mutex » = high

Priority of T1= initial priority of T1 = low
P(mutex) "

mutex)
. P
T1 (low) |
0 1 2
l P(mutex) V(mutex)
{ ‘

Task release times

o ICPP (Immediate Celling Priority Protocol):

= Ceiling priority of a resource = maximum static priority of the tasks
which use it.

= Dynamic task priority = maximum of its own static priority and the
ceiling priorities of any resources it has locked.

= Bi=longest critical section ; prevent deadlocks
page 24

FFixed priority and shared resources

O How to take into account the waiting time Bi:

m Processor utilization factor test :

. . 1
i—1 Ck Ci+Bi . =

g — < .(2i—1
k=1p T = L)

Vi,l <i<n:)

= Worst case response time

R=B+C + Z R [C.

jOhp(i) I:)J

i,

page 25

To conclude on scheduling analysis

= Many feasibility tests: depending on task, processor, scheduler, shared
resource parameters or dependencies. What about uniprocessor or

multiprocessor or hierarchical or distributed?

R=C+), {ﬂmj

jOhp(i)] * j

= Many assumptions : require preemptive and fixed priority scheduling,
synchronous periodic independent tasks with deadlines on requests ...

Many feasibility tests Many assumptions ...
How to choose them?

page 26

Summary

1.

3.

4.

Issues about real-time scheduling : AADL to the
rescue

Focus on fixed-priority scheduling:
= Basics on uniprocessor

AADL components/properties to scheduling
analysis

An example with Cheddar

page 27

AADL to the rescue ?

O Issues:

= Ensure all required model elements are given for the analysis

= Ensure model elements are compliant with analysis
reguirements

O AADL helps because:

= AADL as a pivot language between tools. International
standard.

= Close to the real-time scheduling theory: real-time scheduling
concepts can be found. Ex:
Component categories: thread, data, processor
Property sets: Thread Properties,

Timing_Properties , Communication_Properties
page 28 AADL Project

Property sets for scheduling analysis

O Properties related to processor:

Preemptive_Scheduler . aadl bool ean applies to (processor);

Scheduling_Protocol
i nherit |ist of Supported Scheduling Protocols
applies to (virtual processor, processor);
-- RATE_MONOTONIC_PROTOCOL,
-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ..

page 29

Property sets for scheduling analysis

O Properties related to the threads/data:

Compute Execution_Time : Time_Range
applies to (thread, subprogram, ...);

Deadline : inherit Time => Period applies to (thread, ...);

Period : inherit Time applies to (thread, ...);

Dispatch_Protocol : Supported_Dispatch_Protocols

applies to (thread);
-- Periodic, Sporadic, Timed, Hybrid, Aperiodic , Backgroil
Priority : inherit aadlinteger applies to (thread, ..., data

Concurrency_Control_Protocol
Supported _Concurrency_Control_Protocols applies to (date

page 30 - None, PCP, ICPP, ...

Property sets for scheduling analysis

O Example:

thread implementation receiver.impl
properties
Dispatch_Protocol => Periodic;
Compute_Execution_Time=> 31 ms.. 50 ms,
Deadline => 250 ms;
Period => 250 ms;
end receiver.impl;

data implementation
properties
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;
end target_position.impl;

target_position.impl

page 31

process implementation processing.others
subcomponents
receiver : thread receiver.impl;
anayzer : thread analyzer.impl;
target : data target_position.impl;

processor implementation leon2
properties
Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL;
Preemptive_Scheduler => true;

end leon2;

system implementation radar.simple
subcomponents
main : process processing.others;
Cpu : processor leon2;

Summary

1.

3.

4.

Issues about real-time scheduling : AADL to the
rescue

Focus on fixed-priority scheduling:
= Basics on uniprocessor

AADL components/properties to scheduling
analysis

An example with Cheddar

page 32

Cheddar : a framework to access
schedulability

O Cheddar tool =

analysis framework (queueing system theory & real-time scheduling theory)
+ internal ADL (architecture description language)

+ various standard ADL parsers (AADL, MARTE UML)

+ simple model editor.

o Two versions :
= Open source (Cheddar) : educational and research.
= Industrial (AADLInspector) : Ellidiss Tech product.

O Supports : Ellidiss Tech., Conseil regional de Bretagne, BMO,
EGIDE/Campus France, Thales Communication

O AADL is arich language : Cheddar proposes designp atterns to
help engineers to select relevant feasibility tests

page 33

A “design pattern” approach to increase
real-time scheduling usability

Define a set of AADL design patterns of real-time s ystems.
= models a typical thread communication or synchronization.
= set of constraints on entities of the AADL model.

For each design pattern, define feasibility testst hat can be
applied according to their applicability assumption S.

Schedulability analysis of a AADL model:

1. Checks compliancy of the AADL model with one of the design-
patterns ... which then gives which feasibility tests can be applied.

2. Compute these feasibility tests.

page 34

A “design pattern” approach to increase
real-time scheduling usability

O Specification of various design patterns:

Time-triggered : time triggered architecture (data port
connection)

Ravenscar : shared data and PCP (data component).
Black board : readers/writers synchronization
Queued buffer : producer/consumer synchronization

Compositions of design patterns.

O Example of the Ravenscar design-pattern

page 35

The «Ravenscar» design pattern

O Ravenscar:
m Part of the Ada 1995 standard

= A set of guidelines/constraints to enable efficient and deterministic task
scheduling of Ada programs

m Later extended to Java RTSJ, C/POSIX, and AADL

O Objective: remove all that prevent Ada programs ana lysis
1. All Ada tasks are either periodic or sporadic
2. Communication through shared data, no Ada rendez-vous
3. Shared data protected by PCP
4. Static, no dynamic creation of Ada tasks
5. Fixed priority preemptive scheduling similar to POSIX 1003

0 Feasibility test to compute: worst case thread response time + thread
blocking time due to data component access.

page 36

The «Ravenscar» design pattern

0 Radar Example:

thread implementation receiver.impl
properties
Dispatch_Protocol => Periodic;
Compute_Execution_Time=> 31 ms.. 50 ms,
Deadline => 250 ms;
Period => 250 ms;
end receiver.impl;

data implementation
properties
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;
end target_position.impl;

target_position.impl

page 37

process implementation processing.others
subcomponents
receiver : thread receiver.impl;
anayzer : thread analyzer.impl;
target : data target_position.impl;

processor implementation leon2
properties
Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL;
Preemptive_Scheduler => true;

end leon2;

system implementation radar.simple
subcomponents
main : process processing.others;
Cpu : processor leon2;

The «Ravenscar» design pattern

Demos:
Scheduling analysis of the radar example with Cheddar
.. And with AADLInspector also

43 AADLinspector (Cy/ProjetsfAADLInspector/Al-1.2/examples/arincsimple2.aadl) =8 =

File View Tools

EEE 2B File Edit View Tools Help

mple2 7 ity [Schedule Table] Consistency | Legaiity] Metrics| Naming | Qlﬁ!@|@|ﬂ| @5'%|D|:l
arincsimple2 | ARINCSS3 | g
[eacwace arincsimple_Pkg A

arin

2 |PUBLIC | test entity 2 L 1
& { | Task name=T1 Period= 15: Capacity= 5 Dealine= 15; Start time= 0; Priority= 1; Cpu=arinc
3 |WITH ARINCGS3: | & @Fask response time computed from simulatio cpu No deadline mis e e
4 Number of preemptions cpu 4 1
5 |SYSTEM arincsimple : I
& |[END arinsimple; Number of contedt switches cpu . Taskneme=T2 Periog= 151, Capacity=17: Deadline= 151; Start time= 0; Pricrity= 1; Cpu=arinc
7 Task response time computed from simulatio cpu.partitionl_pr.T worst =5, best =
8 |SYSTEM IMPLEMENTATION arincsimple.others = Task response time computed from simulatio cpu.partitionl_pr.T worst = 15, best | | }
|
2 | SHRCOMEGUENTS Task response time computed from simulatio cpu.partition2_pr1 worst = 15, best| Taskname=T3 Period= 20; Capscity= 3, Desdline= 20 Start time= 0; Prionty= 1; Gpu=arinc

10| ecpu : PROCESSOR powerpc.impl;

11| parcitionl pr : PROCESS partitionl _process.impl:
12| partivion2 pr : PROCESS partition2 process.impl;
13|PROPERTIES

Set priorities according to Rate Monotonic cpu

Set priorities according to Deadline Monctoni cpu
— . . Taskname=T4 Period= 6; Capacity= 1; Desdline=6; Start time= 0; Priority= 1, Cpu=srinc

i, »

14| Actuel Processor Binding => (REFERENCE (cpu.partl)) APEL /
15| Actual Processor_Binding => (REFERENCE (cpu.part2)) APPL T P T I I - = (3 S |

!GIE.‘!D arincsimple.others; P> O E 20 40 llil IIIU 14-0 180

18|PROCESSOR powerpc cpu ‘

18|END powezpcs: 2]

20| r

T ——— ‘ Scheduling simulation, Processor arinc :
22 |SUBCCMPONENTS ion2orT2] M W m W m w m = - Number of preemptions : 760
23| parcl : VIRTUAL PROCESSOR parctitionl rt.impl: e ‘ - Number of context switches : 3205

é:;ag;;ilés"m’“ﬂ EROCESSER pATL I Fondo voh tmel s patitionzpr{ N EE EN EE BN BN =S B - Task response time computed from simulation @

26| Scheduling Protocol => ARINC653: itiont_pr.T34 i — N — 1= P 6/worst 6/best 6.00000/average

Pk on ks M meyl Al o T2 => 56/worst 35/best 46.81667/average

25| MZINCESS..,n;;l’.;_nujﬂr_Frme>‘“; 20ms: fprreily el === —— T3 => 10/worst 4/best 6.00000/average

30/END powespe. impl; partition_pr{ I S - - T4 => 1/worst 1/best 1.00000/average)

= — No deadline missed in the computed scheduling : the task set =&
32|VIRTUAL PROCESSOR partitionl re -

seems to be schedulable.

. v -

Simulator Stop

page 38

