AADL : a radar case study
Goal: to model a simple radar system
Let us suppose we have the following requirements

1. System implementation is composed by physical devices (Hardware entity): antenna + processor + memory + bus
2. and software entity: running processes and threads + operating system functionalities (scheduling) implemented in the processor that represent a part of execution platform and physical devices in the same time.
3. The main process is responsible for signals processing: general pattern: transmitter -> antenna -> receiver -> analyzer -> display
4. Analyzer is a periodic thread that compares transmitted and received signals to perform detection, localization and identification.
5. [..]
Tools used for modeling

- AADL syntax is both textual and graphical, with several editors available
 - Modes exist for emacs, vi
 - OSATE2 provides a comprehensive IDE on top of Eclipse, and additional plug-ins
 - IMV: Instance Model Viewer
 - Consistency checkers, statistics, etc.
 - Adele: graphical editor for Eclipse

- In the following, we will use OSATE2 and IMV
Radar case study

- Hardware/Software breakdown: components

```
PACKAGE radar
PUBLIC

PROCESS processing
  -- ...
END processing;
DEVICE antenna
  -- ...
END antenna;
END RADAR;
```
Radar case study

- Hardware/Software breakdown: features

```plaintext
PROCESS processing
FEATURES
    to_screen : OUT EVENT PORT;
    send_pulse : OUT EVENT PORT;
    receive_pulse : IN DATA PORT;
    get_angle : IN DATA PORT;
END processing;

DEVICE antenna
FEATURES
    antenna_in : IN EVENT PORT;
    VME : REQUIRES BUS ACCESS VME;
END antenna;
```
Radar case study

- Hardware/Software breakdown: connections
Radar case study

- Hardware/Software breakdown: connections

```plaintext
SYSTEM IMPLEMENTATION radar.simple
SUBCOMPONENTS
   aerial : DEVICE antenna;
   rotor : DEVICE motor;
   monitor : DEVICE screen;
   main : PROCESS processing.others;
   cpu : PROCESSOR leon2;
   VME : BUS VME;
   RAM : MEMORY RAM;
CONNECTIONS
   PORT aerial.antenna_out -> main.receive_pulse;
   PORT rotor.motor_out -> main.get_angle;
   PORT main.send_pulse -> aerial.antenna_in;
   PORT main.to_screen -> monitor.screen_in;
   BUS ACCESS VME -> aerial.VME;
   BUS ACCESS VME -> rotor.VME;
   BUS ACCESS VME -> monitor.VME;
   BUS ACCESS VME -> cpu.VME;
   BUS ACCESS VME -> RAM.VME;
```
Radar case study

- Hardware/Software breakdown: bindings

```plaintext
PROPERTIES
  Actual_Memory_Binding => reference (ram) applies to main;
  Actual_Processor_Binding => reference (cpu) applies to main;
END radar.simple;
```
Radar case study

- Software elements
A few words on AADL usage

- AADL is for architectural description, period
- Not to be compared with UML suites
 - Behavior, types, link with source code is not required

- Keep in mind models support an objective
 - For now, it is just a high-level view of the design

- In the next sections, we will complete the models with
 - Properties to support schedulability analysis
 - Elements to generate actual implementation